(2,5 điểm) Cho tam giác \[ABC\]. Gọi \[I\] là trung điểm của \[AB\]. Trên tia đối của tia \[IC\], lấy điểm \[M\] sao cho \[IM = IC\].
a) Chứng minh rằng \[\Delta AIM = \Delta BIC\].
b) Gọi \[E\] là trung điểm của \[AC\]. Trên tia đối của tia \[EB\] lấy điểm \[N\] sao cho \[EN = EB\]. Chứng minh \[AN{\rm{ // }}BC\].
c) Chứng minh rằng \[A\] là trung điểm của đoạn \[MN\].
(2,5 điểm) Cho tam giác \[ABC\]. Gọi \[I\] là trung điểm của \[AB\]. Trên tia đối của tia \[IC\], lấy điểm \[M\] sao cho \[IM = IC\].
a) Chứng minh rằng \[\Delta AIM = \Delta BIC\].
b) Gọi \[E\] là trung điểm của \[AC\]. Trên tia đối của tia \[EB\] lấy điểm \[N\] sao cho \[EN = EB\]. Chứng minh \[AN{\rm{ // }}BC\].
c) Chứng minh rằng \[A\] là trung điểm của đoạn \[MN\].
Quảng cáo
Trả lời:
![Cho tam giác \[ABC\]. Gọi \[I\] là tr (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/5-1763818794.png)
a) Xét \(\Delta AIM\) và \(\Delta BIC\) có:
\[IA = IB\] (do \[I\] là trung điểm của \[AB\]);
\(\widehat {AIM} = \widehat {BIC}\) (hai góc đối đỉnh);
\[IM = IC\] (giả thiết).
Do đó \(\Delta AIM = \Delta BIC\) (c.g.c)
b) Xét \(\Delta ANE\) và \(\Delta CBE\) có:
\[EA = EC\] (do \[E\] là trung điểm của \[AC\]);
\(\widehat {AEN} = \widehat {CEB}\) (hai góc đối đỉnh);
\[EN = EB\] (giả thiết).
Do đó \[\Delta ANE = \Delta CBE\] (c.g.c)
Suy ra \(\widehat {NAE} = \widehat {BCE}\) (hai góc tương ứng)
Mà \(\widehat {NAE},\,\,\,\widehat {BCE}\) là hai góc ở vị trí so le trong nên \[AN{\rm{ // }}BC\].
c) Do \(\Delta AIM = \Delta BIC\) (câu a)
Suy ra \(\widehat {MAI} = \widehat {CBI}\) (hai góc tương ứng)
Mà \(\widehat {MAI},\,\,\widehat {CBI}\) là hai góc ở vị trí so le trong nên \[AM{\rm{ // }}BC\].
Mặt khác \[AN{\rm{ // }}BC\] (theo câu b)
Do đó qua điểm \[A\] có hai đường thẳng song song với \[BC\] nên theo tiên đề Euclid, hai đường thẳng \[AM\] và \[AN\] trùng nhau hay ba điểm \[A,{\rm{ }}M,{\rm{ }}N\] thẳng hàng.
Lại có \[\Delta ANE = \Delta CBE\] (theo câu b) nên \[AN = CB\] (hai cạnh tương ứng)
Mặt khác \[AM = BC\] (do \(\Delta AIM = \Delta BIC\))
Do đó\[AM = AN\](cùng bằng \[BC\])
Ba điểm \[A,{\rm{ }}M,{\rm{ }}N\] thẳng hàng và \[AM = AN\] nên \[A\] là trung điểm của \[MN\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\frac{2}{5} + \frac{3}{5}.\frac{{10}}{7} = \frac{2}{5} + \frac{6}{7} = \frac{{14}}{{35}} + \frac{{30}}{{35}} = \frac{{44}}{{35}}\);
b) \(\frac{3}{4}.37\frac{1}{2} - \frac{3}{4}.13\frac{1}{2} = \frac{3}{4}.\left( {37\frac{1}{2} - 13\frac{1}{2}} \right) = \frac{3}{4}.24 = 18\);
c) \(6:\left( { - \frac{1}{2}} \right) + \sqrt {25} - {\left( { - 2023} \right)^0} = 6.\left( { - 2} \right) + 5 - 1\)
\( = - 12 + 5 - 1 = - 8\).
Câu 2
Lời giải
Đáp án đúng là: A
Ta có \(\left| x \right| = \left\{ \begin{array}{l} - x,\,\,x < 0\\\,\,\,\,0,\,\,x = 0\\\,\,\,\,x,\,\,x > 0\end{array} \right.\).
Vậy ta chọn phương án A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\frac{{18}}{{36}}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.