Câu hỏi:

23/11/2025 56 Lưu

(1,0 điểm) Quan sát biểu đồ sau:
(1,0 điểm) Quan sát biểu đồ sau: a) Biểu đồ trên thuộc dạng biểu đồ gì và biểu diễn thông tin gì? (ảnh 1)

a) Biểu đồ trên thuộc dạng biểu đồ gì và biểu diễn thông tin gì?

b) Tính số học sinh bị còi xương và béo phì, biết sĩ số lớp \[7B\]\[40\] học sinh.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Biểu đồ đã cho thuộc dạng biểu đồ hình quạt tròn.

Biểu đồ biểu diễn thông tin về tỉ lệ phần trăm thể trạng của học sinh lớp 7B.

b) Số học sinh bị còi xương chiếm \(10\% \) tổng số học sinh cả lớp, do đó có \(40.10\% = 4\) học sinh bị còi xương.

Số học sinh béo phì chiếm \(22,5\% \) tổng số học sinh cả lớp, do đó có \(40.22,5\% = 9\) học sinh béo phì.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Học sinh vẽ lại hình theo đúng số đo các góc.

Cho hình vẽ bên.  a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán. (ảnh 2)

GT

\(xx',\,\,yy',\,\,uv\) là các đường thẳng;

Đoạn thẳng \(MN\) cắt \(xx'\) tại \(M\), \[\widehat {xMN} = 75^\circ \];

Đoạn thẳng \(MN\) cắt \(yy'\) tại \(N\), \[\widehat {MNy'} = 75^\circ \];

\(uv\) cắt \(xx'\) tại \(A\), \(uv\) cắt \(yy'\) tại \(B\), \(\widehat {ABy'} = 120^\circ \).

c) tia \(At\) là tia phân giác của góc \(\widehat {MAB}\).

KL

b) Giải thích \(xx'\,{\rm{//}}\,yy'\). Tính \(\widehat {uAx'}\).

c) Tính \(\widehat {MAt}\).

b) Ta có \[\widehat {xMN} = \widehat {MNy'}\] (cùng bằng \[75^\circ \])

Mà hai góc này ở vị trí so le trong  nên \(xx'\,{\rm{//}}\,yy'\) (dấu hiệu nhận biết).

Do \(xx'\,{\rm{//}}\,yy'\) suy ra \(\widehat {uAx'} = \widehat {ABy'} = 120^\circ \) (hai góc đồng vị).

c) Ta có \(\widehat {MAB} = \widehat {uAx'} = 120^\circ \) (hai góc đối đỉnh)

Vì tia \(At\) là tia phân giác của góc \(\widehat {MAB}\) nên \(\widehat {MAt} = \frac{1}{2}\widehat {MAB} = 60^\circ \).

Câu 2

A. \[a \bot b\];         
B. \[a\,{\rm{//}}\,b\];           
C.  \[a\] trùng với \[b\];                                
D. \[a\]\[b\] cắt nhau.

Lời giải

Đáp án đúng là: B

Đáp án đúng là: B (ảnh 1)

Ta có \[a\,{\rm{//}}\,c\], \[b\,{\rm{//}}\,c\] suy ra \[a\,{\rm{//}}\,b\].

Câu 4

A. \(\frac{5}{{14}}\);                              
B. \(\frac{7}{6}\);                
C. \(\frac{{ - 2}}{{15}}\);                     
D. \(\frac{{15}}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP