Câu hỏi:

24/11/2025 92 Lưu

Cho tứ diện \(ABCD\). Gọi \(E,F\) lần lượt là trung điểm của các cạnh \(AB\)\(AC\) (Hình vẽ sau).

Media VietJack

Khẳng định nào sau đây đúng?                               

A. \(EF\parallel \left( {ABC} \right)\).
B. \(EF\parallel \left( {ABD} \right)\).     
C. \(EF\) cắt \(\left( {BCD} \right)\).      
D. \(EF\parallel \left( {BCD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có: \(\left\{ \begin{array}{l}EF\parallel BC\\EF \not\subset \left( {BCD} \right)\\BC \subset \left( {BCD} \right)\end{array} \right. \Rightarrow EF\parallel \left( {BCD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a{\rm{//}}b \Rightarrow \left( P \right){\rm{//}}\left( Q \right)\). 
B. \(a\)\(b\) chéo nhau.
C. \(\left( P \right){\rm{//}}\left( Q \right) \Rightarrow a{\rm{//}}\left( Q \right)\)\(b{\rm{//}}\left( P \right)\).          
D. \(\left( P \right){\rm{//}}\left( Q \right) \Rightarrow a{\rm{//}}b\).

Lời giải

Chọn C

Đáp án \(C\) đúng vì theo nhận xét trong SGK.

Câu 2

A. \(2\).
B. \( + \infty \).
C. \(0\).  
D. \( - \frac{2}{3}\).

Lời giải

Chọn C

Ta có: \[\mathop {\lim }\limits_{n \to + \infty } \frac{2}{{n - 3}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\frac{2}{n}}}{{1 - \frac{3}{n}}} = 0\].

Câu 3

A. \( - 2\).          
B. \(1\).       
C. \( - 1\).    
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(D'A'\).       
B. \(BD\).  
C. \(C'D'\).            
D. \(CC'\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(1\).    
B. \(2\).         
C. \( + \infty \).     
D. \( - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(d\) cắt \(\left( \alpha \right)\).    
B. \(d\parallel \left( \alpha \right)\).            
C. \(d\)chứa trong \(\left( \alpha \right)\).             

D. \(d\) cắt \(\left( \alpha \right)\) hoặc \(d\parallel \left( \alpha \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP