Câu hỏi:

24/11/2025 45 Lưu

 a) Tìm \(x\) để các số \(2;8;x;128\) theo thứ tự đó lập thành một cấp số nhân.

b) Tính giới hạn \(L = \lim \frac{{3{n^2} - 2n + 5}}{{4{n^2} + 7}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Các số \(2;8;x;128\) theo thứ tự đó lập thành một cấp số nhân nên công bội \(q = \frac{8}{2} = 4\).

Vậy \(x = 8 \cdot 4 = 32\).

b) Ta có \(L = \lim \frac{{3{n^2} - 2n + 5}}{{4{n^2} + 7}} = \lim \frac{{3 - \frac{2}{n} + \frac{5}{{{n^2}}}}}{{4 + \frac{7}{{{n^2}}}}} = \frac{3}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a{\rm{//}}b \Rightarrow \left( P \right){\rm{//}}\left( Q \right)\). 
B. \(a\)\(b\) chéo nhau.
C. \(\left( P \right){\rm{//}}\left( Q \right) \Rightarrow a{\rm{//}}\left( Q \right)\)\(b{\rm{//}}\left( P \right)\).          
D. \(\left( P \right){\rm{//}}\left( Q \right) \Rightarrow a{\rm{//}}b\).

Lời giải

Chọn C

Đáp án \(C\) đúng vì theo nhận xét trong SGK.

Câu 2

A. \(2\).
B. \( + \infty \).
C. \(0\).  
D. \( - \frac{2}{3}\).

Lời giải

Chọn C

Ta có: \[\mathop {\lim }\limits_{n \to + \infty } \frac{2}{{n - 3}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\frac{2}{n}}}{{1 - \frac{3}{n}}} = 0\].

Câu 3

A. \(1\).    
B. \(2\).         
C. \( + \infty \).     
D. \( - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(D'A'\).       
B. \(BD\).  
C. \(C'D'\).            
D. \(CC'\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \( - 2\).          
B. \(1\).       
C. \( - 1\).    
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP