Câu hỏi:

24/11/2025 79 Lưu

 a) Tính giới hạn \(\mathop {\lim }\limits_{x \to \,\,3} \frac{{{x^2} - 7x + 12}}{{2x - 6}}\)

b) Tìm giá trị của tham số m để hàm số\(f(x) = \left\{ \begin{array}{l}{m^2}{x^2} + 5mx\,\,\,\,khi\,\,x > - 2\\4 - x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,x \le - 2\end{array} \right.\) liên tục tại \(x = - 2\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\mathop {\lim }\limits_{x \to \,\,3} \frac{{{x^2} - 7x + 12}}{{2x - 6}}\)=\(\mathop {\lim }\limits_{x \to \,\,3} \frac{{\left( {x - 3} \right)\left( {x - 4} \right)}}{{2\left( {x - 3} \right)}} = \mathop {\lim }\limits_{x \to \,\,3} \frac{{x - 4}}{2} = \frac{{ - 1}}{2}\).

b) \(\mathop {\lim }\limits_{x \to \,\,{{\left( { - 2} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to \,\,{{\left( { - 2} \right)}^ + }} \left( {{m^2}{x^2} + 5mx} \right) = 4{m^2} - 10m\)

\(\mathop {\lim }\limits_{x \to \,\,{{\left( { - 2} \right)}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to \,\,{{\left( { - 2} \right)}^ - }} \left( {4 - x} \right) = 6\); \(f\left( { - 2} \right) = 6\)

Hàm số \(f\left( x \right)\) liên tục tại \(x = - 2\)\( \Leftrightarrow 4{m^2} - 10m = 6 \Leftrightarrow 4{m^2} - 10m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}m = \frac{{ - 1}}{2}\\m = 3\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Gọi N là trung điểm của CD

Ta có \(SC//MN\) ( Do \(MN\) là đường trung bình của tam giác \(SCD\) )

Vì G là trọng tâm của tam giác ACD nên \(N \in AG\)

Ta có \(MN \subset \left( {AMG} \right);\,\,\,SC \not\subset \left( {AMG} \right)\) nên \(SC//\left( {AMG} \right)\)

b)Trong (SAC) có \(AH \cap SO = P\)

Qua P vẽ đường thẳng song song với BD cắt SB và SD lần lượt tại I và K

Media VietJack

Gọi Q là trung điểm của HC

Vì \(IP//BO\)nên \(\frac{{SB}}{{SI}} = \frac{{SO}}{{SP}}\,\,\,(1)\)

Mà \(OQ//AH\) nên \(\frac{{SO}}{{SP}} = \frac{{SQ}}{{SH}}\,\,\,(2)\)

Từ (1) và (2) suy ra \(\frac{{SB}}{{SI}} = \frac{{SQ}}{{SH}}\,\,\,\)

Ta có \(\frac{{2SB}}{{SI}} - \frac{{SC}}{{SH}}\,\,\, = \frac{{2SQ}}{{SH}} - \frac{{SC}}{{SH}} = \frac{{2SQ - \left( {SQ + QC} \right)}}{{SH}} = \frac{{SQ - HQ}}{{SH}} = \frac{{SH}}{{SH}} = 1\)

Khi đó \(\frac{{2SB}}{{SI}} - \frac{{SC}}{{SH}} = 1 \Leftrightarrow 2SB.SH - SC.SI = SI.SH \Leftrightarrow 2SB.SH = SC.SI + SI.SH\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. AD và BC song song với nhau.              
B. AD và BC chéo nhau.
C. AD và BC cắt nhau.       
D. AD và BC cùng nằm trong một mặt phẳng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP