Câu hỏi:

24/11/2025 85 Lưu

Cho hai đường thẳng chéo nhau \(a\), \(b\) \(M \notin a\), \(M \notin b\). Khẳng định nào sau đây sai?

A. Có duy nhất một mặt phẳng song song với \(a\) và \(b\).
B. Có duy nhất một mặt phẳng chứa \(a\) và song song với \(b\).
C. Có duy nhất một mặt phẳng đi qua điểm \(M\), song song với \(a\) và \(b\).
D. Có vô số đường thẳng song song với \(a\) và cắt \(b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Có vô số mặt phẳng song song với \(a\) và \(b\) \( \Rightarrow \)Khẳng định ở phương án \({\rm{A}}\) là khẳng định sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau.
B. Nếu \(a\,\,{\rm{// }}\left( P \right)\) thì tồn tại trong \(\left( P \right)\) đường thẳng \(b\) để \(b\,{\rm{// }}a\).
C. Nếu \(\left\{ \begin{array}{l}a\,{\rm{ // }}\left( P \right)\\b \subset \left( P \right)\end{array} \right.\) thì \(a{\rm{ // }}b\).
D. Nếu \(a\,{\rm{ // }}\left( P \right)\) và đường thẳng \(b\) cắt mặt phẳng \(\left( P \right)\) thì hai đường thẳng \(a\) và \(b\) cắt nhau.

Lời giải

Chọn B

Ÿ Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì chúng có thể: Cắt nhau, song song nhau hoặc chéo nhau \( \Rightarrow \)Loại phương án \({\rm{A}}\).

Ÿ Nếu \(\left\{ \begin{array}{l}a\,{\rm{ // }}\left( P \right)\\b \subset \left( P \right)\end{array} \right.\) thì \(a{\rm{ // }}b\) hoặc \(a\) và \(b\) chéo nhau \( \Rightarrow \)Loại phương án \({\rm{C}}\).

Ÿ Nếu \(a\,{\rm{ // }}\left( P \right)\) và đường thẳng \(b\) cắt mặt phẳng \(\left( P \right)\) thì hai đường thẳng \(a\) và \(b\) cắt nhau hoặc chéo nhau \( \Rightarrow \)Loại phương án \({\rm{D}}\).

Câu 2

A. Nếu \[b\,{\rm{//}}\,\left( \alpha \right)\] thì \[b\,{\rm{//}}\,a\].
B. Nếu \[b\] cắt \[\left( \alpha \right)\] thì \[b\] cắt \[a\].
C. Nếu \[b\,{\rm{//}}\,a\] thì \[b\,{\rm{//}}\,\left( \alpha \right)\].
D. Nếu \(b\,{\rm{//}}\,\left( \alpha \right)\) và \(\left( \beta \right)\) chứa \[b\] thì \(\left( \beta \right)\) sẽ cắt \[\left( \alpha \right)\] theo giao tuyến là đường thẳng \[d\] song song với \[a\].

Lời giải

Chọn C

Ta có \(\left\{ \begin{array}{l}b \not\subset \left( \alpha  \right)\\b\,{\rm{//}}\,a\\a \subset \left( \alpha  \right)\end{array} \right.\)\( \Rightarrow b\,{\rm{//}}\,\left( \alpha  \right)\).

Câu 3

A. \[\left[ {7;{\rm{ }}9} \right)\].             
B. \[\left[ {9;{\rm{ }}11} \right)\].                            
C. \[\left[ {11;{\rm{ }}13} \right)\].                          
D. \[\left[ {13;{\rm{ }}15} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {SAC} \right)\).                        
B. \(\left( {SBD} \right)\).        
C. \(\left( {SAB} \right)\).                    
D. \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ {6,5;\,\,7,0} \right)\).                 
B. \(\left[ {7,0;\,\,7,5} \right)\). 
C. \(\left[ {7,5;\,\,8,0} \right)\).                    
D. \(\left[ {8,0;\,\,8,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2\).                      
B. \( - \,7\).              
C. \( - \,5\).                           
D. \( - \,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP