CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

\[\lim \left( {\frac{{3n + 2}}{{n + 2}} + {a^2} - 4a} \right) = 0 \Leftrightarrow {a^2} - 4a + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = 3\end{array} \right.\]. Vậy \(S = 4\).

Câu 2

A. \[{G_1}{G_2}{\rm{//}}\left( {ABC} \right)\].   
B. \[{G_1}{G_2} = \frac{1}{3}AB\].  
C. \[B{G_1}\], \[A{G_2}\]\[CD\] đồng qui.   
D. \[{G_1}{G_2}\] và AD chéo nhau.

Lời giải

Media VietJack

Chọn B

Ta có \[{G_1}{G_2} = \frac{1}{3}AB\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.  Hàm số \(y = f(x)\) liên tục tại \(x = a\) khi và chỉ khi\(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = f(a).\)
B.  Hàm số \(y = f(x)\) liên tục tại \(x = a\) khi và chỉ khi\(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = f(a).\)
C. Hàm số \(y = f(x)\) liên tục tại \(x = a\) khi và chỉ khi\(\mathop {\lim }\limits_{x \to a} f(x) = f(a).\)
D. Hàm số \(y = f(x)\) liên tục tại \(x = a\) khi và chỉ khi\(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = \mathop {\lim }\limits_{x \to {a^ - }} f(x).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({u_n} = 3n + 2026\,\,\left( {n \ge 2,n \in \mathbb{N}} \right)\).      
B. \({u_n} = 3n + 2014\,\,\left( {n \ge 2,n \in \mathbb{N}} \right)\).
C. \({u_n} = - 3n + 2020\,\,\left( {n \ge 2,n \in \mathbb{N}} \right)\).  
D. \({u_n} = - 3n + 2026\,\,\left( {n \ge 2,n \in \mathbb{N}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP