Giải các phương trình sau:
a) \(\left( { - 2x + 5} \right)\left( {\frac{3}{4}x - 6} \right) = 0\).
b) \(\frac{{x + 2}}{{x - 2}} = \frac{{x - 2}}{{x + 2}} + \frac{{16}}{{{x^2} - 4}}\).
Giải các phương trình sau:
a) \(\left( { - 2x + 5} \right)\left( {\frac{3}{4}x - 6} \right) = 0\).
b) \(\frac{{x + 2}}{{x - 2}} = \frac{{x - 2}}{{x + 2}} + \frac{{16}}{{{x^2} - 4}}\).
Quảng cáo
Trả lời:
a) \(\left( { - 2x + 5} \right)\left( {\frac{3}{4}x - 6} \right) = 0\)
\( - 2x + 5 = 0\) hoặc \(\frac{3}{4}x - 6 = 0\)
\( - 2x = - 5\) hoặc \(\frac{3}{4}x = 6\)
\(x = \frac{5}{2}\) hoặc \(x = 8\)
Vậy phương trình đã cho có hai nghiệm là \(x = \frac{5}{2};\) \(x = 8\).b) Điều kiện xác định: \(x \ne 2,\,\,x \ne - 2.\)
\(\frac{{x + 2}}{{x - 2}} = \frac{{x - 2}}{{x + 2}} + \frac{{16}}{{{x^2} - 4}}\)
\(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)
\({\left( {x + 2} \right)^2} = {\left( {x - 2} \right)^2} + 16\)
\({x^2} + 4x + 4 = {x^2} - 4x + 4 + 16\)
\(8x = 16\)
\(x = 2\) (không thỏa mãn điều kiện)
Vậy phương trình đã cho vô nghiệm.Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét \(\Delta ABC\) vuông tại \(A,\) ta có:
\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ \approx 2,92\) (m).
Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).
Xét \(\Delta BDE\) vuông tại \(B,\) ta có:
\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)
Lời giải
Gọi \(x\) là số lượng khách thứ 51 trở lên, \(x > 0,\,\,x \in \mathbb{N}.\)
Cứ thêm một người thì giá chuyến du lịch còn lại là: \[300\,\,0000 - 50\,\,000 \cdot 1\] đồng/ người cho toàn bộ hành khách.
Thêm \(x\) người thì giá chuyến du lịch còn lại là: \[300\,\,0000 - 50\,\,000x\] đồng/người cho toàn bộ hành khách.
Doanh thu công ty du lịch thu được là:
\(T = \left( {50 + x} \right)\left( {3\,\,000\,\,000 - 50\,\,000x} \right) = 50\,\,000\left( {50 + x} \right)\left( {60 - x} \right)\) (đồng).
Để doanh thu cao nhất thì ta tìm giá trị lớn nhất của biểu thức \(T.\)
⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) vào biểu thức \(T = 50\,\,000\left( {50 + x} \right)\left( {60 - x} \right),\) ta được:
\[T = 50\,\,000\left( {50 + x} \right)\left( {60 - x} \right) \le 50\,\,000 \cdot {\left( {\frac{{50 + x + 60 - x}}{2}} \right)^2} = 151\,\,250\,\,000\].
Dấu “=” xảy ra khi và chỉ khi \[50 + x = 60 - x\] hay \[x = 5\].
Vậy nếu đoàn khách có \(50 + 5 = 55\) người thì công ty du lịch đạt doanh thu cao nhất là \[151\,\,250\,\,000\] đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
