Câu hỏi:

26/11/2025 23 Lưu

Người ta dùng 100 m rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của mảnh vườn là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh vườn để có thể rào được.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x,\,\,y\) lần lượt là độ dài hai cạnh của mảnh vườn hình chữ nhật \(\left( {x > 0,\,\,y > 0} \right).\)

Số mét rào cần rào ba cạnh còn lại của mảnh vườn là: \(2x + y\) (mét).

Diện tích mảnh vườn là: \(xy\) (m2).

⦁ Chứng minh bất đẳng thức: \[ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\] với \(a,\,\,b\) là các số không âm.

Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)

Với mọi \(a,\,\,b\) là các số không âm, ta có:

\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).

Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.

⦁ Áp dụng bất đẳng thức \(\left( * \right)\) ta được:

\[xy = 2 \cdot x \cdot \frac{y}{2} \le 2 \cdot {\left( {\frac{{x + \frac{y}{2}}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{2x + y}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{100}}{2}} \right)^2} = 1\,\,250{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Dấu “=” xảy ra khi và chỉ khi \(x = \frac{y}{2}\) và \(2x + y = 100\) hay \(2 \cdot \frac{y}{2} + y = 100\) tức là \(y = 50\), \(x = 25.\)

Vậy diện tích lớn nhất của mảnh vườn là \(1\,\,250{\rm{\;}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét \(\Delta KEB\) vuông tại \(K\) , ta có:

\(\sin \widehat {EBK} = \frac{{EK}}{{EB}}\); \(\cos \widehat {EBK} = \frac{{KB}}{{EB}}\)

\(\tan \widehat {EBK} = \frac{{EK}}{{KB}};\,\,\cos \widehat {EBK} = \frac{{KB}}{{EK}}\).

Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\). Kéo dài \(CA\) một đoạn sao cho \(AE = AB.\) Kẻ \(EK \bot BC\,\,\)\((K\) nằm trên đường thẳng \(BC).\) (ảnh 1)

b) Xét \(\Delta KEC\) vuông tại \(K\), ta có:

\(EK = EC \cdot \sin C = 16 \cdot \sin 30^\circ  = 8{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta ABE\) vuông tại \(A\) có \(AE = AB\) nên \(\Delta ABE\) vuông cân tại \(A.\) Do đó \(\widehat {AEB} = 45^\circ .\)

Xét \(\Delta EBC\) có \(\widehat {EBK}\) là góc ngoài nên \(\widehat {EBK} = \widehat {AEB} + \widehat {C\,} = 45^\circ  + 30^\circ  = 75^\circ .\)

Theo câu a, ta có \(\sin \widehat {EBK} = \frac{{EK}}{{EB}}\).

Suy ra \(EB = \frac{{EK}}{{\sin \widehat {EBK}}} = \frac{8}{{\sin 75^\circ }} \approx 8,3{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta ABE\) vuông tại \(A\) ta có \(AB = EB \cdot \sin \widehat {AEB} \approx 8,3 \cdot \sin 45^\circ  \approx 5,9{\rm{\;(cm)}}{\rm{.}}\)

c) Xét \(\Delta AEQ\) vuông tại \(A\) ta có: \(AQ = QE \cdot \sin \widehat {CEQ}.\)

Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\). Kéo dài \(CA\) một đoạn sao cho \(AE = AB.\) Kẻ \(EK \bot BC\,\,\)\((K\) nằm trên đường thẳng \(BC).\) (ảnh 2)

Xét \(\Delta ACQ\) vuông tại \(A\) ta có: \(AQ = CQ \cdot \sin \widehat {QCE}\).

Suy ra \(QE \cdot \sin \widehat {CEQ} = CQ \cdot \sin \widehat {QCE}\)

Do đó \[\frac{{QE}}{{\sin \widehat {QCE}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]  (1)

Chứng minh tương tự ta có:

\(CK = CQ \cdot \sin \widehat {EQC} = EC \cdot \sin \widehat {CEQ}\)

Suy ra \[\frac{{EC}}{{\sin \widehat {EQC}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]  (2)

Từ (1) và (2) ta có \[\frac{{QE}}{{\sin \widehat {QCE}}} = \frac{{EC}}{{\sin \widehat {EQC}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]

Lời giải

a) Số tiền lãi bà Hoa thu được trong một năm là \(0,05x\) (triệu đồng).

Để có được số tiền lãi ít nhất là \(20\) triệu đồng/năm thì cần có: \(0,05x \ge 20\).

Vậy bất phương trình cần tìm là: \(0,05x \ge 20\).

b) Giải bất phương trình:

\(0,05x \ge 20\)

\(x \ge 400.\)

Vậy bà Hoa cần gửi ngân hàng ít nhất là \(400\) triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP