Câu hỏi:

26/11/2025 6 Lưu

Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\)

Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\) (ảnh 1)

Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.

Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\) (ảnh 2)

⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)

Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)

⦁ Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)

Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)

⦁ Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)

⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)

Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)

Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)

⦁ Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).

Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).

Thời gian đi từ \(A\) đến \(B\) là:

\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.

Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

\(\sin B = \frac{{AC}}{{BC}},\,\,\cos B = \frac{{AB}}{{BC}},\)

\(\tan B = \frac{{AC}}{{AB}},\,\,\cot B = \frac{{AB}}{{AC}}.\)

Cho \(\Delta ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\).  a) Viết các tỉ số lượng giác của góc \(B.\) (ảnh 1)

b) Xét \(\Delta ABC\) vuông tại \(A,\) theo định lí Pythagore, ta có:

\(B{C^2} = A{B^2} + A{C^2}\)

Suy ra \(A{B^2} = B{C^2} - A{C^2} = {20^2} - {16^2} = 144.\) Do đó \(AB = 12{\rm{\;cm}}.\)

Theo câu a, ta có: \(\cos B = \frac{{AB}}{{BC}} = \frac{{12}}{{20}} = \frac{3}{5}.\) Từ đó suy ra \(\widehat {B\,} \approx 53^\circ 8'.\)

Lại có: \(\widehat {B\,} + \widehat {C\,} = 90^\circ \), suy ra \(\widehat {C\,} = 90^\circ  - \widehat {B\,} \approx 90^\circ  - 53^\circ 8' \approx 36^\circ 52'.\)

Vậy \(AB = 12{\rm{\;cm}},\,\,\widehat {B\,} \approx 53^\circ 8',\,\,\widehat {C\,} \approx 36^\circ 52'.\)

c) Xét \(\Delta ABH\) vuông tại \(H,\) ta có: \(\cos B = \frac{{BH}}{{AB}}.\)

Xét \(\Delta MBH\) vuông tại \(M,\) ta có: \(\cos B = \frac{{BM}}{{BH}}.\)

Ta có: \({\cos ^3}B = \cos B \cdot \cos B \cdot \cos B = \frac{{AB}}{{BC}} \cdot \frac{{BH}}{{AB}} \cdot \frac{{BM}}{{BH}} = \frac{{BM}}{{BC}}.\)

Chứng minh tương tự, ta cũng có: \[{\cos ^3}C = \cos C \cdot \cos C \cdot \cos C = \frac{{AC}}{{BC}} \cdot \frac{{CH}}{{AC}} \cdot \frac{{CK}}{{CH}} = \frac{{CK}}{{BC}}.\]

Lại có \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) nên \(\cos C = \sin B,\) suy ra \[{\sin ^3}B = \frac{{CK}}{{BC}}.\]

Do đó \({\cos ^3}B + {\sin ^3}B = \frac{{BM}}{{BC}} + \frac{{CK}}{{BC}} = \frac{{BM + CK}}{{BC}}.\)

Suy ra \(BM + CK = BC\left( {{{\cos }^3}B + {{\sin }^3}B} \right).\)

Lời giải

a) \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)

 \(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)

 \(\frac{2}{3}x =  - 6\) hoặc \(2x = 8\)

    \(x =  - 9\) hoặc \(x = 4\)

Vậy phương trình đã cho có hai nghiệm là \(x =  - 9;\) \(x = 4\).

b) Điều kiện xác định: \(x \ne 2,\,\,x \ne  - 2.\)

\(\frac{{x + 2}}{{x - 2}} = \frac{{x - 2}}{{x + 2}} + \frac{{16}}{{{x^2} - 4}}\)

\(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)

\({\left( {x + 2} \right)^2} = {\left( {x - 2} \right)^2} + 16\)

\({x^2} + 4x + 4 = {x^2} - 4x + 4 + 16\)

 \(8x = 16\)

  \(x = 2\) (không thỏa mãn điều kiện)

Vậy phương trình đã cho vô nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP