Câu hỏi:

26/11/2025 42 Lưu

Giải các bất phương trình sau:

a) \(9x + 7 >- 12x - 1\).

b) \[\frac{{2x + 1}}{3} - \frac{{x - 4}}{4} \le \frac{{3x + 1}}{6} - \frac{{x - 4}}{{12}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(9x + 7 \ge  - 12x - 1\)

 \(9x + 12x \ge  - 1 - 7\)

 \(21x \ge  - 8\)

     \(x \ge \frac{{ - 8}}{{21}}\)                       

Vậy bất phương trình đã cho có nghiệm là \(x \ge \frac{{ - 8}}{{21}}.\)

b) \[\frac{{2x + 1}}{3} - \frac{{x - 4}}{4} \le \frac{{3x + 1}}{6} - \frac{{x - 4}}{{12}}\]

\[\frac{{4\left( {2x + 1} \right)}}{{12}} - \frac{{3\left( {x - 4} \right)}}{{12}} \le \frac{{2\left( {3x + 1} \right)}}{{12}} - \frac{{x - 4}}{{12}}\]

\[4\left( {2x + 1} \right) - 3\left( {x - 4} \right) \le 2\left( {3x + 1} \right) - \left( {x - 4} \right)\]

\[8x + 4 - 3x + 12 \le 6x + 2 - x + 4\]

\[5x + 16 \le 5x + 6\]

\[5x - 5x \le 6 - 16\]

\[0x \le  - 10\].

Vậy bất phương trình đã cho vô nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét \(\Delta ABC\) vuông tại \(B\), ta có

Người ta cần lắp đặt một thiết bị chiếu sáng gắn trên tường cho một phòng triển lãm như hình vẽ. (ảnh 2)

\(\tan \widehat {BAC} = \frac{{BC}}{{AB}} = \frac{2}{{2,5}} = 0,8\) nên \(\widehat {BAC} \approx 38,7^\circ .\)

Ta có \(\widehat {BAD} = \widehat {BAC} + \widehat {CAD} \approx 38,7^\circ  + 20^\circ  = 58,7^\circ .\)

Xét \(\Delta ABD\) vuông tại \(B\), ta có

\(BD = AB \cdot \tan \widehat {BAD} \approx 2,5 \cdot \tan 58,7^\circ  \approx 4,1\,\,\left( {\rm{m}} \right).\)

Do đó \(CD = BD - BC \approx 4,1 - 2 = 2,1\,\,\left( {\rm{m}} \right).\)

Vậy độ dài vùng được chiếu sáng trên mặt đất khoảng \(2,1\) mét.

Lời giải

a) Đổi \(5,25\) tấn \( = 5\,\,250\,\,{\rm{kg}}\).

Gọi \(x\) (thùng) là số sữa mà xe có thể chở \(\left( {x \in \mathbb{N}*} \right)\).

Khi đó, khối lượng sữa mà xe chở là: \(10x\,\,\left( {{\rm{kg}}} \right).\)

Tổng khối lượng sữa và bác tài xế là: \(65 + 10x\,\,\left( {{\rm{kg}}} \right).\)

Do trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5\,\,250\,\,{\rm{kg}}\) nên ta có

\(65 + 10x \le 5\,\,250\)

Vậy bất phương trình cần tìm là: \(65 + 10x \le 5\,\,250\).

b) Giải bất phương trình:

\(65 + 10x \le 5\,\,250\)

\(10x \le 5\,\,185\)

\(x \le 518,5\)

Mà \(x \in \mathbb{N}*\) nên xe tải đó có thể chở tối đa 518 thùng sữa.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP