Câu hỏi:

26/11/2025 14 Lưu

Giải các bất phương trình sau:

a) \(9x + 7 >- 12x - 1\).

b) \[\frac{{2x + 1}}{3} - \frac{{x - 4}}{4} \le \frac{{3x + 1}}{6} - \frac{{x - 4}}{{12}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(9x + 7 \ge  - 12x - 1\)

 \(9x + 12x \ge  - 1 - 7\)

 \(21x \ge  - 8\)

     \(x \ge \frac{{ - 8}}{{21}}\)                       

Vậy bất phương trình đã cho có nghiệm là \(x \ge \frac{{ - 8}}{{21}}.\)

b) \[\frac{{2x + 1}}{3} - \frac{{x - 4}}{4} \le \frac{{3x + 1}}{6} - \frac{{x - 4}}{{12}}\]

\[\frac{{4\left( {2x + 1} \right)}}{{12}} - \frac{{3\left( {x - 4} \right)}}{{12}} \le \frac{{2\left( {3x + 1} \right)}}{{12}} - \frac{{x - 4}}{{12}}\]

\[4\left( {2x + 1} \right) - 3\left( {x - 4} \right) \le 2\left( {3x + 1} \right) - \left( {x - 4} \right)\]

\[8x + 4 - 3x + 12 \le 6x + 2 - x + 4\]

\[5x + 16 \le 5x + 6\]

\[5x - 5x \le 6 - 16\]

\[0x \le  - 10\].

Vậy bất phương trình đã cho vô nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét \(\Delta KEB\) vuông tại \(K\) , ta có:

\(\sin \widehat {EBK} = \frac{{EK}}{{EB}}\); \(\cos \widehat {EBK} = \frac{{KB}}{{EB}}\)

\(\tan \widehat {EBK} = \frac{{EK}}{{KB}};\,\,\cos \widehat {EBK} = \frac{{KB}}{{EK}}\).

Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\). Kéo dài \(CA\) một đoạn sao cho \(AE = AB.\) Kẻ \(EK \bot BC\,\,\)\((K\) nằm trên đường thẳng \(BC).\) (ảnh 1)

b) Xét \(\Delta KEC\) vuông tại \(K\), ta có:

\(EK = EC \cdot \sin C = 16 \cdot \sin 30^\circ  = 8{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta ABE\) vuông tại \(A\) có \(AE = AB\) nên \(\Delta ABE\) vuông cân tại \(A.\) Do đó \(\widehat {AEB} = 45^\circ .\)

Xét \(\Delta EBC\) có \(\widehat {EBK}\) là góc ngoài nên \(\widehat {EBK} = \widehat {AEB} + \widehat {C\,} = 45^\circ  + 30^\circ  = 75^\circ .\)

Theo câu a, ta có \(\sin \widehat {EBK} = \frac{{EK}}{{EB}}\).

Suy ra \(EB = \frac{{EK}}{{\sin \widehat {EBK}}} = \frac{8}{{\sin 75^\circ }} \approx 8,3{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta ABE\) vuông tại \(A\) ta có \(AB = EB \cdot \sin \widehat {AEB} \approx 8,3 \cdot \sin 45^\circ  \approx 5,9{\rm{\;(cm)}}{\rm{.}}\)

c) Xét \(\Delta AEQ\) vuông tại \(A\) ta có: \(AQ = QE \cdot \sin \widehat {CEQ}.\)

Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\). Kéo dài \(CA\) một đoạn sao cho \(AE = AB.\) Kẻ \(EK \bot BC\,\,\)\((K\) nằm trên đường thẳng \(BC).\) (ảnh 2)

Xét \(\Delta ACQ\) vuông tại \(A\) ta có: \(AQ = CQ \cdot \sin \widehat {QCE}\).

Suy ra \(QE \cdot \sin \widehat {CEQ} = CQ \cdot \sin \widehat {QCE}\)

Do đó \[\frac{{QE}}{{\sin \widehat {QCE}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]  (1)

Chứng minh tương tự ta có:

\(CK = CQ \cdot \sin \widehat {EQC} = EC \cdot \sin \widehat {CEQ}\)

Suy ra \[\frac{{EC}}{{\sin \widehat {EQC}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]  (2)

Từ (1) và (2) ta có \[\frac{{QE}}{{\sin \widehat {QCE}}} = \frac{{EC}}{{\sin \widehat {EQC}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]

Lời giải

a) \[2x(3x - 1) + 6x - 2 = 0\]

\[2x\left( {3x - 1} \right) + 2\left( {3x - 1} \right) = 0\]

\[\left( {3x - 1} \right)\left( {2x + 2} \right) = 0\]

\[2\left( {3x - 1} \right)\left( {x + 1} \right) = 0\]

\(3x - 1 = 0\) hoặc \(x + 1 = 0\)

\(x = \frac{1}{3}\) hoặc \(x =  - 1\).

Vậy nghiệm của phương trình là \(x = \frac{1}{3}\) và \(x =  - 1.\)

b) Điều kiện xác định: \(x \ne 0,\,\,x \ne 2,\,\,x \ne  - 2.\)

\(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\)

\(\frac{{2x}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{\left( {x - 4} \right)\left( {x - 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} = 0\)

\(2x - \left( {x - 1} \right)\left( {x + 2} \right) + \left( {x - 4} \right)\left( {x - 2} \right) = 0\)

\(2x - \left( {{x^2} + 2x - x - 2} \right) + \left( {{x^2} - 2x - 4x + 8} \right) = 0\)

\(2x - \left( {{x^2} + x - 2} \right) + \left( {{x^2} - 6x + 8} \right) = 0\)

\(2x - {x^2} - x + 2 + {x^2} - 6x + 8 = 0\)

\( - 5x + 10 = 0\)

\( - 5x =  - 10\)

    \(x = 2\) (không thỏa mãn điều kiện).

Vậy phương trình đã cho vô nghiệm.