Câu hỏi:

26/11/2025 14 Lưu

Người ta dùng một loại xe tải để chở sữa tươi cho một nhà máy. Biết mỗi thùng sữa loại \(180\,\,{\rm{ml}}\) nặng trung bình \(10\,\,{\rm{kg}}.\) Theo khuyến nghị, trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5,25\) tấn.  

a) Gọi \(x\) là số thùng sữa mà xe có thể chở \(\left( {x \in \mathbb{N}*} \right)\). Viết bất phương trình phù hợp với dữ liệu đề bài.

b) Hỏi xe có thể chở được tối đa bao nhiêu thùng sữa như vậy, biết bác lái xe nặng \(65\,\,kg?\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đổi \(5,25\) tấn \( = 5\,\,250\,\,{\rm{kg}}\).

Gọi \(x\) (thùng) là số sữa mà xe có thể chở \(\left( {x \in \mathbb{N}*} \right)\).

Khi đó, khối lượng sữa mà xe chở là: \(10x\,\,\left( {{\rm{kg}}} \right).\)

Tổng khối lượng sữa và bác tài xế là: \(65 + 10x\,\,\left( {{\rm{kg}}} \right).\)

Do trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5\,\,250\,\,{\rm{kg}}\) nên ta có

\(65 + 10x \le 5\,\,250\)

Vậy bất phương trình cần tìm là: \(65 + 10x \le 5\,\,250\).

b) Giải bất phương trình:

\(65 + 10x \le 5\,\,250\)

\(10x \le 5\,\,185\)

\(x \le 518,5\)

Mà \(x \in \mathbb{N}*\) nên xe tải đó có thể chở tối đa 518 thùng sữa.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[2x(3x - 1) + 6x - 2 = 0\]

\[2x\left( {3x - 1} \right) + 2\left( {3x - 1} \right) = 0\]

\[\left( {3x - 1} \right)\left( {2x + 2} \right) = 0\]

\[2\left( {3x - 1} \right)\left( {x + 1} \right) = 0\]

\(3x - 1 = 0\) hoặc \(x + 1 = 0\)

\(x = \frac{1}{3}\) hoặc \(x =  - 1\).

Vậy nghiệm của phương trình là \(x = \frac{1}{3}\) và \(x =  - 1.\)

b) Điều kiện xác định: \(x \ne 0,\,\,x \ne 2,\,\,x \ne  - 2.\)

\(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\)

\(\frac{{2x}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{\left( {x - 4} \right)\left( {x - 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} = 0\)

\(2x - \left( {x - 1} \right)\left( {x + 2} \right) + \left( {x - 4} \right)\left( {x - 2} \right) = 0\)

\(2x - \left( {{x^2} + 2x - x - 2} \right) + \left( {{x^2} - 2x - 4x + 8} \right) = 0\)

\(2x - \left( {{x^2} + x - 2} \right) + \left( {{x^2} - 6x + 8} \right) = 0\)

\(2x - {x^2} - x + 2 + {x^2} - 6x + 8 = 0\)

\( - 5x + 10 = 0\)

\( - 5x =  - 10\)

    \(x = 2\) (không thỏa mãn điều kiện).

Vậy phương trình đã cho vô nghiệm.

Lời giải

a) Xét \(\Delta KEB\) vuông tại \(K\) , ta có:

\(\sin \widehat {EBK} = \frac{{EK}}{{EB}}\); \(\cos \widehat {EBK} = \frac{{KB}}{{EB}}\)

\(\tan \widehat {EBK} = \frac{{EK}}{{KB}};\,\,\cos \widehat {EBK} = \frac{{KB}}{{EK}}\).

Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\). Kéo dài \(CA\) một đoạn sao cho \(AE = AB.\) Kẻ \(EK \bot BC\,\,\)\((K\) nằm trên đường thẳng \(BC).\) (ảnh 1)

b) Xét \(\Delta KEC\) vuông tại \(K\), ta có:

\(EK = EC \cdot \sin C = 16 \cdot \sin 30^\circ  = 8{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta ABE\) vuông tại \(A\) có \(AE = AB\) nên \(\Delta ABE\) vuông cân tại \(A.\) Do đó \(\widehat {AEB} = 45^\circ .\)

Xét \(\Delta EBC\) có \(\widehat {EBK}\) là góc ngoài nên \(\widehat {EBK} = \widehat {AEB} + \widehat {C\,} = 45^\circ  + 30^\circ  = 75^\circ .\)

Theo câu a, ta có \(\sin \widehat {EBK} = \frac{{EK}}{{EB}}\).

Suy ra \(EB = \frac{{EK}}{{\sin \widehat {EBK}}} = \frac{8}{{\sin 75^\circ }} \approx 8,3{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta ABE\) vuông tại \(A\) ta có \(AB = EB \cdot \sin \widehat {AEB} \approx 8,3 \cdot \sin 45^\circ  \approx 5,9{\rm{\;(cm)}}{\rm{.}}\)

c) Xét \(\Delta AEQ\) vuông tại \(A\) ta có: \(AQ = QE \cdot \sin \widehat {CEQ}.\)

Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\). Kéo dài \(CA\) một đoạn sao cho \(AE = AB.\) Kẻ \(EK \bot BC\,\,\)\((K\) nằm trên đường thẳng \(BC).\) (ảnh 2)

Xét \(\Delta ACQ\) vuông tại \(A\) ta có: \(AQ = CQ \cdot \sin \widehat {QCE}\).

Suy ra \(QE \cdot \sin \widehat {CEQ} = CQ \cdot \sin \widehat {QCE}\)

Do đó \[\frac{{QE}}{{\sin \widehat {QCE}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]  (1)

Chứng minh tương tự ta có:

\(CK = CQ \cdot \sin \widehat {EQC} = EC \cdot \sin \widehat {CEQ}\)

Suy ra \[\frac{{EC}}{{\sin \widehat {EQC}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]  (2)

Từ (1) và (2) ta có \[\frac{{QE}}{{\sin \widehat {QCE}}} = \frac{{EC}}{{\sin \widehat {EQC}}} = \frac{{CQ}}{{\sin \widehat {CEQ}}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP