Câu hỏi:

26/11/2025 36 Lưu

Phương trình \[\left( {\sin x + 1} \right)\left( {\sin x - \sqrt 2 } \right) = 0\] có nghiệm là

A. \[x = \pm \frac{\pi }{2} + k2\pi \]\(\left( {k \in \mathbb{Z}} \right)\). 
B. \[x = \pm \frac{\pi }{4} + k2\pi \],\(x = - \frac{\pi }{8} + k\pi \left( {k \in \mathbb{Z}} \right)\).
C. \[x = \frac{\pi }{2} + k2\pi \]\(\left( {k \in \mathbb{Z}} \right)\).   
D. \(x = - \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \(\left( {\sin x + 1} \right)\left( {\sin x - \sqrt 2 } \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sin x = - 1\\\sin x = \sqrt 2 (VN)\end{array} \right. \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \), \(\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Ta có \(\mathop {\lim }\limits_{n \to + \infty } \left( {an - \sqrt {{n^2} + bn + 2} } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{{a^2}{n^2} - {n^2} - bn - 2}}{{an + \sqrt {{n^2} + bn + 2} }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {{a^2} - 1} \right){n^2} - bn - 2}}{{an + \sqrt {{n^2} + bn + 2} }}\).

Từ đây ta có \(\mathop {\lim }\limits_{n \to + \infty } \left( {an - \sqrt {{n^2} + bn + 2} } \right) = 2\) 

Do vậy \(S = a + b = - 3\).

Câu 3

A. \(GK\)\(BC\) cắt nhau.
B. \(GK{\rm{//}}AB\).
C. \(GK\)\(AB\) cắt nhau.  
D. \(GK\)\(AB\) chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{5}{4}\).   
B. 2.    
C. \(\frac{7}{4}\).               
D. \( - \frac{7}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ {20;40} \right)\).  
B. \(\left[ {40;60} \right)\).     
C. \(\left[ {60;80} \right)\).
D. \(\left[ {80;100} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = \frac{{3\pi }}{4} + k\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).        
B. \(\left[ \begin{array}{l}x = \frac{\pi }{8} + k\pi \\x = \frac{{3\pi }}{8} + k\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).
C. \(\left[ \begin{array}{l}x = \frac{\pi }{8} + k2\pi \\x = \frac{{3\pi }}{8} + k2\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).        
D. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{{3\pi }}{4} + k2\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {AA'C'} \right)\].
B. \[\left( {CC'D'} \right)\]. 
C. \[\left( {ADD'} \right)\].                                          
D. \[\left( {BB'A'} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP