(0,5 điểm) Có hai chung cư cao tầng xây cạnh nhau với khoảng cách giữa chúng là \(HK = 25\,m\). Để đảm bảo an ninh, trên nóc chung cư thứ hai người ta lắp camera ở vị trí \(C\). Gọi \(A,B\) lần lượt là vị trí thấp nhất, cao nhất trên chung cư thứ nhất mà camera có thể quan sát được (tham khảo hình vẽ). Hãy tính số đo góc \(\widehat {ACB}\) (phạm vi camera có thể quan sát được ở chung cư thứ nhất). Biết rằng chiều cao của chung cư thứ hai là \(CK = 32\,m,\,\,AH = 6\,m\), \(BH = 24\,m\) (làm tròn kết quả đến hàng phần mười theo đơn vị độ).

Quảng cáo
Trả lời:

Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(\tan \widehat {BCN} = \frac{{BN}}{{CN}} = \frac{{25}}{8}\)
\(\tan \widehat {ACN} = \frac{{AM}}{{CM}} = \frac{{25}}{{26}}\)
\(\widehat {BCA} = \widehat {BCN} - \widehat {ACM} \Rightarrow \tan \widehat {BCA} = \frac{{\tan \widehat {BCN} - \tan \widehat {ACM}}}{{1 + \tan \widehat {BCN}.\tan \widehat {ACM}}} = \frac{{\frac{{25}}{8} - \frac{{25}}{{26}}}}{{1 + \frac{{25}}{8}.\frac{{25}}{{26}}}} = \frac{{450}}{{833}}\)
\( \Rightarrow \widehat {BCA} \approx 28,4^\circ \)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C

Ta có:
\(\left. \begin{array}{l}M \in \left( {MCD} \right) \cap \left( {SAB} \right)\\AB\,{\rm{//}}\,CD\\AB \subset \left( {SAB} \right)\\CD \subset \left( {MCD} \right)\end{array} \right\} \Rightarrow \left( {MCD} \right) \cap \left( {SAB} \right) = Mx\,{\rm{//}}\,AB\,{\rm{//}}\,CD\).
Gọi \(N = Mx \cap SA\). Khi đó thiết diện của hình chóp cắt bởi mặt phẳng \(\left( {MCD} \right)\) là tứ giác \(MNDC\).
Mặt khác do \(Mx\,{\rm{//}}\,CD \Rightarrow MN\,{\rm{//}}\,CD\). Do đó \(MNDC\) là hình thang.
Lời giải

a) Ta có
\(\left. \begin{array}{l}M \in \left( {CMN} \right)\\M \in SA \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow \left( {CMN} \right) \cap \left( {SAB} \right)\,\,\left( 1 \right)\)
Trong mp\(\left( {ABCD} \right)\) kéo dài \(CN \cap AB \equiv E\)
\( \Rightarrow \left. \begin{array}{l}E \in CN \subset \left( {CMN} \right)\\E \in AB \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow E \in \left( {CMN} \right) \cap \left( {SAB} \right)\,\,\left( 2 \right)\)
Từ (1) và (2) ta có \(\left( {CMN} \right) \cap \left( {SAB} \right)\, = ME\)
Hay \(\left( {CMN} \right) \cap \left( {SAB} \right)\, = MF\,\,\left( {F = EM \cap SB} \right)\)
b) Ta có:
\(\left. \begin{array}{l}MN \not\subset \left( {SCD} \right)\\MN{\rm{//}}SD\\SD \subset \left( {SCD} \right)\end{array} \right\} \Rightarrow MN{\rm{//}}\left( {SCD} \right)\)

c) Ta có trong \(\left( {ABCD} \right):AP \cap BN \equiv L\)\( \Rightarrow L\) là trung điểm của \(AP\)
Trong \(\left( {SAP} \right):SL \cap MP \equiv K\)
\( \Rightarrow K\)là trọng tâm tam giác \(SAP\)
\( \Rightarrow \frac{{MK}}{{KP}} = \frac{1}{2}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
