Cho hình chóp \(S.ABCD\) có đáy \[ABCD\] là hình bình hành. Gọi \(O\)là giao điểm của \(AC\) và \(BD\). Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là
Quảng cáo
Trả lời:
Chọn B
![Câu 15: Cho hình chóp \(S.ABCD\) có đáy \[ABCD\] là hình bình hành. Gọi \(O\)là giao điểm của \(AC\) và \(BD\). Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là A. \(SD.\) B. \(SO.\) C. \(SB.\) D. \(SA.\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/33-1764262468.png)
Hiển nhiên \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\).
Ta có \(O = AC \cap BD \Rightarrow \left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in BD \subset \left( {SBC} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\).
Do đó \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
![Chọn C \[SA\] và \[BC\]không đồng phẳng n (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/38-1764263251.png)
Gọi \(N\) là trung điểm của \(BC\). Vì \[G\] là trọng tâm tam giác \(ABC\) nên \(\frac{{AG}}{{AN}} = \frac{2}{3}\).
Vì điểm \(M\) nằm trên cạnh \(AD\) sao cho \(AM = 2MD\) nên \(\frac{{AM}}{{AD}} = \frac{2}{3}\).
Do đó \(\frac{{AG}}{{AN}} = \frac{{AM}}{{AD}} = \frac{2}{3}\). Suy ra \(GM{\rm{ // }}DN\).
Ta có \(\left\{ \begin{array}{l}GM{\rm{ // }}DN{\rm{ }}\\GM \not\subset \left( {BCD} \right)\\DN \subset \left( {BCD} \right)\end{array} \right. \Rightarrow GM{\rm{// }}\left( {BCD} \right)\).
Câu 2
Lời giải
Ta có \({u_n} = 2n - 1\,\left( {n \in {\mathbb{N}^*}} \right)\). Suy ra \({u_{n + 1}} = 2\left( {n + 1} \right) - 1 = 2n + 1\,\left( {n \in {\mathbb{N}^*}} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
