Câu hỏi:

01/12/2025 7 Lưu

Cho hình chóp \(S.ABCD\). Gọi \[I\] là trung điểm của \[SD\], \[J\] là điểm trên \[SC\] và không trùng trung điểm \[SC\]. Giao tuyến của hai mặt phẳng \(\left( {ABCD} \right)\)\(\left( {AIJ} \right)\)

A. \[AF\], \[F\] là giao điểm \[IJ\]\[CD\].      
B. \[AH\], \[H\] là giao điểm \[IJ\]\[AB\].                  
C. \[AG\], \[G\] là giao điểm \[IJ\]\[AD\].
D. \[AK\], \[K\] là giao điểm \[IJ\]\[BC\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Cho hình chóp S.ABCD. Gọi I là trung điểm của SD, J là điểm trên SC (ảnh 1)

 

Trong mặt phẳng \(\left( {SCD} \right)\), gọi \(F = IJ \cap DC\)

Ta có \(F \in \left( {AIJ} \right) \cap \left( {ABCD} \right)\) \(A \in \left( {AIJ} \right) \cap \left( {ABCD} \right)\) nên \(AF = \left( {AIJ} \right) \cap \left( {ABCD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. \[\left( {BC'D} \right)\].    
B.  \[\left( {BCA'} \right)\]. 
C. \[\left( {BDA'} \right)\].         
D. \[\left( {A'C'C} \right)\].

Lời giải

Chọn A

Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng AB'D' song song với mặt phẳng nào trong các mặt phẳng sau đây (ảnh 1)

Do \[ABCD.A'B'C'D'\] là hình hộp nên \(BB'{\rm{ // }}DD';\;AB{\rm{ // }}C'D'\)\(BB' = DD';\;AB = C'D'\)

Suy ra \(BB'D'D,\;ABC'D'\) là các hình bình hành

Suy ra \(AD'{\rm{ // }}BC';\;B'D'{\rm{ // }}BD\) hay \(AD'{\rm{ // }}\left( {BC'D} \right);\;B'D'{\rm{ // }}\left( {BC'D} \right)\)

Vậy \[\left( {AB'D'} \right){\rm{ // }}\left( {BC'D} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(MN{\rm{ // }}mp\left( {SAB} \right)\).             
B. \[MN{\rm{ // }}mp\left( {SCD} \right)\].            
C. \(MN{\rm{ // }}mp\left( {ABCD} \right)\).       
D. \(MN{\rm{ // }}mp\left( {SBC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {SAC} \right)\).  
B. \(\left( {SAB} \right)\).       
C. \(\left( {SAD} \right)\).    
D. \(\left( {SBC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[1\].           
B. \( - \frac{1}{3}\).     
C. \[ + \infty \].  
D. \[ - \infty \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP