Câu hỏi:

01/12/2025 7 Lưu

Tìm \[a\,,\,\,b\,,\,\,c\] (hoặc \(x\,,\,\,y\,,\,\,z\)) biết:

c) \(\frac{a}{{10}} = \frac{b}{5};\,\,\frac{b}{2} = \frac{c}{5}\)\(2a - 3b + 4c = 330\);

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c) Ta có \(\frac{a}{{10}} = \frac{b}{5};\,\,\frac{b}{2} = \frac{c}{5}\) nên \(\frac{{5a}}{{10}} = \frac{b}{1} = \frac{{2c}}{5}\) suy ra \(\frac{{2a}}{4} = \frac{{3b}}{3} = \frac{{4c}}{{10}}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{2a}}{4} = \frac{{3b}}{3} = \frac{{4c}}{{10}} = \frac{{2a - 3b + 4c}}{{4 - 3 + 10}} = \frac{{330}}{{11}} = 30\).

Suy ra \(2a = 120\,;\,\,3b = 90\,;\,\,4c = 300\).

Do đó \(a = 30\,;\,\,b = 30\,;\,\,c = 75\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số học sinh của lớp 7A, 7B, 7C lần lượt là \[a,{\rm{ }}b,{\rm{ }}c.\]

Theo đề bài: \(a + b + c = 153{\kern 1pt} {\kern 1pt} {\kern 1pt} \)\(b = \frac{8}{9}a\,;\,\,c = \frac{{17}}{{16}}b\).

Ta có: \({\kern 1pt} a + b + c = a + \frac{8}{9}a + \frac{{17}}{{16}}b = a + \frac{8}{9}a + \frac{{17}}{{16}} \cdot \frac{8}{9}a\)

\( = a + \frac{8}{9}a + \frac{{17}}{{18}}a = \frac{{18 + 16 + 17}}{{18}}a = \frac{{51}}{{18}}a = 153\).

Do đó \(a = 54\,;\,\,b = 48\,;\,\,c = 51\).

Lời giải

f) Ta có \(\frac{{a - 1}}{2} = \frac{{b - 2}}{3} = \frac{{c - 3}}{4}\) nên \(\frac{{a - 1}}{2} = \frac{{2b - 4}}{6} = \frac{{3c - 9}}{{12}}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{a - 1}}{2} = \frac{{2b - 4}}{6} = \frac{{3c - 9}}{{12}} = \frac{{a - 1 - 2b + 4 + 3c - 9}}{{2 - 6 + 12}} = \frac{8}{8} = 1\).

Suy ra \(a - 1 = 2\,;\,\,2b - 4 = 6\,;\,\,3c - 9 = 12\).

Do đó \(a = 3\,;\,\,b = 5\,;\,\,c = 7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP