Câu hỏi:

02/12/2025 59 Lưu

Tìm \[a\,,\,\,b\,,\,\,c\] (hoặc \(x\,,\,\,y\,,\,\,z\)) biết:

e) \(\frac{x}{3} = \frac{y}{7} = \frac{z}{5}\)\({x^2} - {y^2} + {z^2} = - 60\);

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

e) Ta có \(\frac{x}{3} = \frac{y}{7} = \frac{z}{5}\) nên \(\frac{{{x^2}}}{9} = \frac{{{y^2}}}{{49}} = \frac{{{z^2}}}{{25}}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{{x^2}}}{9} = \frac{{{y^2}}}{{49}} = \frac{{{z^2}}}{{25}} = \frac{{{x^2} - {y^2} + {z^2}}}{{9 - 49 + 25}} = \frac{{ - 60}}{{ - 15}} = 4\).

Suy ra \({x^2} = 36\,;\,\,{y^2} = 196\,;\,\,c = 100\).

Do đó \(a = 6\,;\,\,b = 14\,;\,\,c = 10\) hoặc \(a = - 6\,;\,\,b = - 14\,;\,\,c = - 10\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số giấy thu hoạch được của lớp 7A, lớp 7B, lớp 7C lần lượt là \[a,{\rm{ }}b,{\rm{ }}c\,\,{\rm{(kg)}}{\rm{.}}\]

Theo đề bài, ta có: \(a + b + c = 130\).

Do số lượng giấy góp các lớp bằng nhau nên số lượng học sinh mỗi lớp tỉ lệ nghịch với số lượng giấy mỗi học sinh góp nên \(2a = 3b = 4c\) hay \(\frac{a}{6} = \frac{b}{4} = \frac{c}{3}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{6} = \frac{b}{4} = \frac{c}{3} = \frac{{a + b + c}}{{6 + 4 + 3}} = \frac{{130}}{{13}} = 10\).

Do đó \(a = 60\,;\,\,b = 40\,;\,\,c = 30\).

Lời giải

Hướng dẫn giải

Gọi độ dài 3 cạnh của tam giác lần lượt là \[a,{\rm{ }}b,{\rm{ }}c.\]

Theo đề bài: \(a:b:c = 3:5:7{\kern 1pt} \) hay \({\kern 1pt} \frac{a}{3} = \frac{b}{5} = \frac{c}{7}\).

a) Chu vi tam giác bằng 45 nên \(a + b + c = 45\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\({\kern 1pt} \frac{a}{3} = \frac{b}{5} = \frac{c}{7} = \frac{{a + b + c}}{{3 + 5 + 7}} = \frac{{45}}{{15}} = 3\).

Do đó \(a = 9\,;\,\,b = 15\,;\,\,c = 21\).

b) Do \(a:b:c = 3:5:7{\kern 1pt} {\kern 1pt} \) nên \(a < b < c\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\({\kern 1pt} \frac{a}{3} = \frac{b}{5} = \frac{c}{7} = \frac{{a - b + c}}{{3 - 5 + 7}} = \frac{{20}}{5} = 4\).

Do đó \(a = 12\,;\,\,b = 20\,;\,\,c = 28\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP