Mặt sân cỏ trong sân vận động Quốc gia Mỹ Đình có dạng hình chữ nhật có chiều dài 105 m và chiều rộng 68 m. Nam vẽ mô phỏng mặt sân cỏ này bằng một hình chữ nhật có chiều dài 21 cm và chiều rộng 13,6 cm. Hỏi Nam đã vẽ mô phỏng mặt sân cỏ đúng tỉ lệ thực tế hay chưa?
Mặt sân cỏ trong sân vận động Quốc gia Mỹ Đình có dạng hình chữ nhật có chiều dài 105 m và chiều rộng 68 m. Nam vẽ mô phỏng mặt sân cỏ này bằng một hình chữ nhật có chiều dài 21 cm và chiều rộng 13,6 cm. Hỏi Nam đã vẽ mô phỏng mặt sân cỏ đúng tỉ lệ thực tế hay chưa?
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có:
− Tỉ lệ chiều dài và chiều rộng sân cỏ trong sân vận động Quốc gia Mỹ Đình là \(\frac{{105}}{{68}}.\)
− Tỉ lệ chiều dài và chiều rộng sân cỏ Nam mô phỏng là: \(\frac{{21}}{{13,6}} = \frac{{210}}{{136}} = \frac{{105}}{{68}}\).
Ta thấy tỉ lệ chiều dài và chiều rộng sân cỏ trên thực tế và trên bản mô phỏng bằng nhau.
Do đó Nam đã vẽ mô phỏng mặt sân cỏ đúng tỉ lệ thực tế.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).
Xét \(\Delta ACD\) và \(\Delta ECD\) có:
\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.
Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).
Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)
Suy ra \(DE \bot BC\).
b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)
Vì \(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).
Xét \(\Delta CAD\) và \(\Delta ACM\) có:
\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).
Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).
Suy ra (hai cạnh tương ứng).
c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:
\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)
Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)
Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).
Xét tam giác \(NBD\) và tam giác \(NKD\) có:
\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.
Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).
Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)
d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:
\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].
Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)
Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)
Suy ra \(KE \bot BC\).
Mà \(DE \bot AC\).
Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.
Câu 2
Cho \(\Delta ABC\) có \(AB < AC\,\). Kẻ \(AH\) vuông góc với \(BC(\,H \in BC)\). Trên tia \(AH\) lấy điểm \(K\) sao cho \(H\) là trung điểm của \(AK\).
a) chứng minh: \(\Delta AHC = \Delta KCH\).
b) Gọi \(E\) là trung điểm của \(BC\). Trên tia \(AE\) lấy điểm \(D\) sao cho \(E\) là trung điểm của \(AD\). Chứng minh rằng: \(BD = AC = CK\).
c) chứng minh rằng: \(EH\) là tia phân giác của góc \(\widehat {AEK}\) và \(DK\,{\rm{//}}\,BC\).
d) Gọi \(I\) là giao điểm của \(BD\) và \(CK\), \(N\) là trung điểm của \(KD\). Chứng minh: \(E,I,N\) thẳng hàng.
Cho \(\Delta ABC\) có \(AB < AC\,\). Kẻ \(AH\) vuông góc với \(BC(\,H \in BC)\). Trên tia \(AH\) lấy điểm \(K\) sao cho \(H\) là trung điểm của \(AK\).
a) chứng minh: \(\Delta AHC = \Delta KCH\).
b) Gọi \(E\) là trung điểm của \(BC\). Trên tia \(AE\) lấy điểm \(D\) sao cho \(E\) là trung điểm của \(AD\). Chứng minh rằng: \(BD = AC = CK\).
c) chứng minh rằng: \(EH\) là tia phân giác của góc \(\widehat {AEK}\) và \(DK\,{\rm{//}}\,BC\).
d) Gọi \(I\) là giao điểm của \(BD\) và \(CK\), \(N\) là trung điểm của \(KD\). Chứng minh: \(E,I,N\) thẳng hàng.
Lời giải

a) Xét \(\Delta AHC\) và \(\Delta KCH\) có
\(AH = HK\) (\(H\) là trung điểm của \(AK\))
\(\widehat {AHC} = \widehat {CHK}\) (\(AH \bot BC\))
\(CH\) là cạnh chung
Do đó \(\Delta AHC = \Delta KHC\) (cgc).
b) Vì \[\Delta AHC = \Delta KHC\] (chứng minh trên) do đó \[AC = CK\] (2 cạnh tương ứng) (1)
Xét \[\Delta AEC\] và \[\Delta DEB\] ta có :
\[AE = ED\] (\[E\] là trung điểm của \[AD\])
\[BE = CE\] (\[E\] là trung điểm của \[BE\]) \[\widehat {AEC} = \widehat {BEC}\] (đối đỉnh)
Do đó \[\Delta AEC = \Delta DEB\] (c.g.c), suy ra \[AC = DB\] (2 cạnh tương ứng) (2)
Từ (1) và (2) suy ra \[BD = AC = CK\].
c) Xét \[\Delta AHC\] và \[\Delta KHE\] ta có \[AH = KH\], \[\widehat {AHE} = \widehat {KHE}\], \[HE\] là cạnh chung
Suy ra \[\Delta AHC = \Delta KHE\] (c.g.c) do đó \[\widehat {AEH} = \widehat {KEH}\] (2 góc tương ứng)
Suy ra \[EH\] là tia phân giác \[AEK\].
Vì \[\Delta AHE = \Delta KHE\] nên \[AE = KE\] mà \[AE = ED\]
Suy ra \[KE = ED\] do đó \[\Delta KED\] cân tại \[E\] nên \[\widehat {EKD} = \widehat {EDK}\].
\[\widehat {EDK} + \widehat {KED} = 90^\circ \] nên \[\widehat {EKD} = \frac{{180^\circ - \widehat {KED}}}{2}\]
Lại có \[\widehat {AKE} + \widehat {KED} = 180^\circ \] suy ra \[\widehat {AKE} = 180^\circ - \widehat {KED}\].
\[\widehat {AEH} + \widehat {HEK} = 180^\circ - \widehat {KED}\]
\[\widehat {HEK} = 180^\circ - \widehat {KED}\]
\[\widehat {HEK} = \frac{{180^\circ - \widehat {KED}}}{2}\] (4)
Từ (3) và (4) suy ra \[\widehat {HEK} = \widehat {ABC}\] mà chúng là 2 góc so le trong
Do đó \[HE{\rm{//}}KD\] hay \[BC{\rm{//}}KD\].
d) Xét \[\Delta KEN\] và \[\Delta DEN\] \[CE = ED\] (\[EN\] chung) \[KN = ND\] (\[N\] là trung điểm của \[KD\])
Suy ra \[\Delta KEN = \Delta DEN\] (c.c.c) nên \[\widehat {ENK} = \widehat {END}\] mà \[\widehat {ENK} + \widehat {END} = 180^\circ \].
Suy ra \[\widehat {ENC} = \widehat {END} = \frac{{180^\circ }}{2} = 90^\circ \] hay \[EN \bot KD\]. (*)
\[\Delta KBE = \Delta DCE\] suy ra \[BK = CD\] (2 cạnh tương ứng)
\[\Delta BKD = \Delta CDK\] (c.c.c) do đó \[\widehat {BDK} = \widehat {CKD}\] (2 góc tương ứng)
Suy ra \[\Delta KID\] cân tại \[I\] nên \[IK = ID\] xét \[\Delta KIN = \Delta DIN\] do đó \[\widehat {INK} - \widehat {IND}\].
Mà \[\widehat {INK} + \widehat {IND} = 180^\circ \] suy ra \[\widehat {INK} = \widehat {IND} = 90^\circ \] hay \[IN \bot KD\]. (**)
Từ (*) và (**) suy ra \(E,I,N\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.