Để gói 10 chiếc bánh chưng, bà Nam cần 5 kg gạo nếp. Nếu bà muốn gói 45 chiếc bánh chưng cùng loại gửi cho người dân vùng lũ thì bà cần bao nhiêu kg gạo nếp?
Để gói 10 chiếc bánh chưng, bà Nam cần 5 kg gạo nếp. Nếu bà muốn gói 45 chiếc bánh chưng cùng loại gửi cho người dân vùng lũ thì bà cần bao nhiêu kg gạo nếp?
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \[x\,\,\left( {{\rm{kg}}} \right)\] là số kg gạo nếp cần dùng.
Theo đề bài, ta có tỉ lệ thức: \(\frac{5}{{10}} = \frac{x}{{45}}\).
Suy ra \(x = \frac{{5 \cdot 45}}{{10}} = \frac{{5 \cdot 45}}{{2 \cdot 5}} = \frac{{45}}{2} = 22,5\).
Vậy số gạo nếp cần dùng để gói 45 chiếc bánh chưng là \[22,5\,\,{\rm{kg}}{\rm{.}}\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Vì \[\Delta ACD\] có \(\widehat A\) tù nên \(\widehat A\) là góc lớn nhất trong ba góc nên \[CD\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất). Do đó \[CD > CA\] (1) Ta có: \(\widehat {BDC} > \widehat A\) (do \(\widehat {BDC}\) là góc ngoài của \[\Delta ACD\]) Do đó \(\widehat {BDC}\) tù. |
|
Vì \[\Delta BDC\] có \(\widehat {BDC}\) tù nên \(\widehat {BDC}\) là góc lớn nhất trong ba góc.
Nên đó \[BC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).
Do đó \[CB > CD\] (2)
Từ (1) và (2) suy ra \[CB > CD > CA\].
b) Ta có: \(\widehat {DEC} > \widehat A\) (do \(\widehat {DEC}\) là góc ngoài của tam giác \[AED\]).
Suy ra \(\widehat {DEC}\) tù.
Vì \[\Delta DEC\] có \(\widehat {DEC}\) tù nên \(\widehat {DEC}\) là góc lớn nhất trong ba góc.
Nên \[DC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).
Do đó \[DC > DE\].
Mà \[CB > CD\] (theo câu a) nên \[CB > DE\].
Do đó \[DE < BC\].
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có \(MA = MD\) (giả thiết) \(MB = MC\) (vì \[M\] là trung điểm) \(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh) Do đó \(\Delta ABM = \Delta DCM\) (c.g.c) b) Từ câu a: \(\Delta ABM = \Delta DCM\). Suy ra \(\widehat {BAM} = \widehat {MDC}\). Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau). |
|
c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).
Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)
Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).
Vậy \(AM < \frac{{AB + AC}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho tam giác \(ABC\) có góc \[A\] tù. Trên cạnh \[AB\] lấy điểm \[D\]. a) So sánh các đoạn thẳng \(CA,\,\,CD\) và \[CB\]. b) Trên cạnh \[AC\] lấy điểm \[E\]. So sánh \[DE\] và \[BC\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/6-1764575076.png)
