Câu hỏi:

01/12/2025 3 Lưu

Một hình chữ nhật có chiều rộng \[x - 2{\rm{ (cm)}}\], chiều dài lớn hơn chiều rộng \[3{\rm{ cm}}.\] Viết biểu thức đại số biểu thị diện tích hình chữ nhật đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \[x{\rm{ }}\left( {{\rm{cm}}} \right)\] là chiều rộng hình chữ nhật.

Khi đó, ta có:

Chiều dài hình chữ nhật là: \[x - 2 + 3 = x + 1{\rm{ (cm)}}\]

Diện tích hình chữ nhật là: \[\left( {x - 2} \right)\left( {x + 1} \right)\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Chiều rộng hình chữ nhật \[x{\rm{ (cm)}}\]

Chiều dài hình chữ nhật là: \[x + 5{\rm{ }}\left( {{\rm{cm}}} \right)\]

Diện tích hình chữ nhật là: \[x\left( {x + 5} \right){\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\]

Thay \[x = 3\] vào biểu thức \[x\left( {x + 5} \right)\], ta có:

\[x\left( {x + 5} \right) = 3\left( {3 + 5} \right) = 24\].

Vậy diên tích hình chữ nhật là \[24{\rm{ c}}{{\rm{m}}^{\rm{2}}}{\rm{.}}\]

Lời giải

a) Vì \[\Delta ACD\] có \(\widehat A\) tù nên \(\widehat A\) là góc lớn nhất trong ba góc nên \[CD\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[CD > CA\]          (1)

Ta có: \(\widehat {BDC} > \widehat A\) (do \(\widehat {BDC}\) là góc ngoài của \[\Delta ACD\])

Do đó \(\widehat {BDC}\) tù.

 Cho tam giác \(ABC\) có góc \[A\] tù. Trên cạnh \[AB\] lấy điểm \[D\]. a) So sánh các đoạn thẳng \(CA,\,\,CD\) và \[CB\]. b) Trên cạnh \[AC\] lấy điểm \[E\]. So sánh \[DE\] và \[BC\]. (ảnh 1)

Vì \[\Delta BDC\] có \(\widehat {BDC}\) tù nên \(\widehat {BDC}\) là góc lớn nhất trong ba góc.

Nên đó \[BC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[CB > CD\]          (2)

Từ (1) và (2) suy ra \[CB > CD > CA\].

b) Ta có: \(\widehat {DEC} > \widehat A\) (do \(\widehat {DEC}\) là góc ngoài của tam giác \[AED\]).

Suy ra \(\widehat {DEC}\) tù.

Vì \[\Delta DEC\] có \(\widehat {DEC}\) tù nên \(\widehat {DEC}\) là góc lớn nhất trong ba góc.

Nên \[DC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[DC > DE\].

Mà \[CB > CD\] (theo câu a) nên \[CB > DE\].

Do đó \[DE < BC\].