Cho tam giác \[ABC\]. Gọi \[I\] là trung điểm của \[AB\]. Trên tia đối của tia \[IC\], lấy điểm \[M\] sao cho \[IM = IC\].
a) Chứng minh rằng \[\Delta AIM = \Delta BIC\].
b) Gọi \[E\] là trung điểm của \[AC\]. Trên tia đối của tia \[EB\] lấy điểm \[N\] sao cho \[EN = EB.\] Chứng minh \[AN{\rm{ // }}BC\].
c) Chứng minh rằng \[A\] là trung điểm của đoạn \[MN\].
Cho tam giác \[ABC\]. Gọi \[I\] là trung điểm của \[AB\]. Trên tia đối của tia \[IC\], lấy điểm \[M\] sao cho \[IM = IC\].
a) Chứng minh rằng \[\Delta AIM = \Delta BIC\].
b) Gọi \[E\] là trung điểm của \[AC\]. Trên tia đối của tia \[EB\] lấy điểm \[N\] sao cho \[EN = EB.\] Chứng minh \[AN{\rm{ // }}BC\].
c) Chứng minh rằng \[A\] là trung điểm của đoạn \[MN\].
Quảng cáo
Trả lời:
![Cho tam giác \[ABC\]. Gọi \[I\] là trung điểm củ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/11-1764575226.png)
a) Xét \(\Delta AIM\) và \(\Delta BIC\) có:
\[IA = IB\] (do \[I\] là trung điểm của \[AB\]);
\(\widehat {AIM} = \widehat {BIC}\) (hai góc đối đỉnh);
\[IM = IC\] (giả thiết).
Do đó \(\Delta AIM = \Delta BIC\) (c.g.c)
b) Xét \(\Delta ANE\) và \(\Delta CBE\) có:
\[EA = EC\] (do \[E\] là trung điểm của \[AC\]);
\(\widehat {AEN} = \widehat {CEB}\) (hai góc đối đỉnh);
\[EN = EB\] (giả thiết).
Do đó \[\Delta ANE = \Delta CBE\] (c.g.c)
Suy ra \(\widehat {NAE} = \widehat {BCE}\) (hai góc tương ứng)
Mà \(\widehat {NAE},\,\,\,\widehat {BCE}\) là hai góc ở vị trí so le trong nên \[AN{\rm{ // }}BC\].
c) Do \(\Delta AIM = \Delta BIC\) (câu a)
Suy ra \(\widehat {MAI} = \widehat {CBI}\) (hai góc tương ứng).
Mà \(\widehat {MAI},\,\,\widehat {CBI}\) là hai góc ở vị trí so le trong nên \[AM{\rm{ // }}BC\].
Mặt khác \[AN{\rm{ // }}BC\] (theo câu b).
Do đó qua điểm \[A\] có hai đường thẳng song song với \[BC\] nên theo tiên đề Euclid, hai đường thẳng \[AM\] và \[AN\] trùng nhau hay ba điểm \[A,{\rm{ }}M,{\rm{ }}N\] thẳng hàng.
Lại có \[\Delta ANE = \Delta CBE\] (theo câu b) nên \[AN = CB\] (hai cạnh tương ứng).
Mặt khác \[AM = BC\] (do \(\Delta AIM = \Delta BIC\)).
Do đó\[AM = AN\](cùng bằng \[BC\]).
Ba điểm \[A,{\rm{ }}M,{\rm{ }}N\] thẳng hàng và \[AM = AN\] nên \[A\] là trung điểm của \[MN\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).
Xét \(\Delta ACD\) và \(\Delta ECD\) có:
\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.
Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).
Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)
Suy ra \(DE \bot BC\).
b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)
Vì \(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).
Xét \(\Delta CAD\) và \(\Delta ACM\) có:
\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).
Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).
Suy ra (hai cạnh tương ứng).
c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:
\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)
Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)
Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).
Xét tam giác \(NBD\) và tam giác \(NKD\) có:
\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.
Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).
Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)
d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:
\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].
Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)
Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)
Suy ra \(KE \bot BC\).
Mà \(DE \bot AC\).
Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có \(MA = MD\) (giả thiết) \(MB = MC\) (vì \[M\] là trung điểm) \(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh) Do đó \(\Delta ABM = \Delta DCM\) (c.g.c) b) Từ câu a: \(\Delta ABM = \Delta DCM\). Suy ra \(\widehat {BAM} = \widehat {MDC}\). Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau). |
|
c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).
Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)
Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).
Vậy \(AM < \frac{{AB + AC}}{2}\).
Câu 3
Cho \(\Delta ABC\) có \(AB < AC\,\). Kẻ \(AH\) vuông góc với \(BC(\,H \in BC)\). Trên tia \(AH\) lấy điểm \(K\) sao cho \(H\) là trung điểm của \(AK\).
a) chứng minh: \(\Delta AHC = \Delta KCH\).
b) Gọi \(E\) là trung điểm của \(BC\). Trên tia \(AE\) lấy điểm \(D\) sao cho \(E\) là trung điểm của \(AD\). Chứng minh rằng: \(BD = AC = CK\).
c) chứng minh rằng: \(EH\) là tia phân giác của góc \(\widehat {AEK}\) và \(DK\,{\rm{//}}\,BC\).
d) Gọi \(I\) là giao điểm của \(BD\) và \(CK\), \(N\) là trung điểm của \(KD\). Chứng minh: \(E,I,N\) thẳng hàng.
Cho \(\Delta ABC\) có \(AB < AC\,\). Kẻ \(AH\) vuông góc với \(BC(\,H \in BC)\). Trên tia \(AH\) lấy điểm \(K\) sao cho \(H\) là trung điểm của \(AK\).
a) chứng minh: \(\Delta AHC = \Delta KCH\).
b) Gọi \(E\) là trung điểm của \(BC\). Trên tia \(AE\) lấy điểm \(D\) sao cho \(E\) là trung điểm của \(AD\). Chứng minh rằng: \(BD = AC = CK\).
c) chứng minh rằng: \(EH\) là tia phân giác của góc \(\widehat {AEK}\) và \(DK\,{\rm{//}}\,BC\).
d) Gọi \(I\) là giao điểm của \(BD\) và \(CK\), \(N\) là trung điểm của \(KD\). Chứng minh: \(E,I,N\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
