Cho tam giác \[ABC\]. Gọi \[I\] là trung điểm của \[AB\]. Trên tia đối của tia \[IC\], lấy điểm \[M\] sao cho \[IM = IC\].
a) Chứng minh rằng \[\Delta AIM = \Delta BIC\].
b) Gọi \[E\] là trung điểm của \[AC\]. Trên tia đối của tia \[EB\] lấy điểm \[N\] sao cho \[EN = EB.\] Chứng minh \[AN{\rm{ // }}BC\].
c) Chứng minh rằng \[A\] là trung điểm của đoạn \[MN\].
Cho tam giác \[ABC\]. Gọi \[I\] là trung điểm của \[AB\]. Trên tia đối của tia \[IC\], lấy điểm \[M\] sao cho \[IM = IC\].
a) Chứng minh rằng \[\Delta AIM = \Delta BIC\].
b) Gọi \[E\] là trung điểm của \[AC\]. Trên tia đối của tia \[EB\] lấy điểm \[N\] sao cho \[EN = EB.\] Chứng minh \[AN{\rm{ // }}BC\].
c) Chứng minh rằng \[A\] là trung điểm của đoạn \[MN\].
Quảng cáo
Trả lời:
![Cho tam giác \[ABC\]. Gọi \[I\] là trung điểm củ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/11-1764575226.png)
a) Xét \(\Delta AIM\) và \(\Delta BIC\) có:
\[IA = IB\] (do \[I\] là trung điểm của \[AB\]);
\(\widehat {AIM} = \widehat {BIC}\) (hai góc đối đỉnh);
\[IM = IC\] (giả thiết).
Do đó \(\Delta AIM = \Delta BIC\) (c.g.c)
b) Xét \(\Delta ANE\) và \(\Delta CBE\) có:
\[EA = EC\] (do \[E\] là trung điểm của \[AC\]);
\(\widehat {AEN} = \widehat {CEB}\) (hai góc đối đỉnh);
\[EN = EB\] (giả thiết).
Do đó \[\Delta ANE = \Delta CBE\] (c.g.c)
Suy ra \(\widehat {NAE} = \widehat {BCE}\) (hai góc tương ứng)
Mà \(\widehat {NAE},\,\,\,\widehat {BCE}\) là hai góc ở vị trí so le trong nên \[AN{\rm{ // }}BC\].
c) Do \(\Delta AIM = \Delta BIC\) (câu a)
Suy ra \(\widehat {MAI} = \widehat {CBI}\) (hai góc tương ứng).
Mà \(\widehat {MAI},\,\,\widehat {CBI}\) là hai góc ở vị trí so le trong nên \[AM{\rm{ // }}BC\].
Mặt khác \[AN{\rm{ // }}BC\] (theo câu b).
Do đó qua điểm \[A\] có hai đường thẳng song song với \[BC\] nên theo tiên đề Euclid, hai đường thẳng \[AM\] và \[AN\] trùng nhau hay ba điểm \[A,{\rm{ }}M,{\rm{ }}N\] thẳng hàng.
Lại có \[\Delta ANE = \Delta CBE\] (theo câu b) nên \[AN = CB\] (hai cạnh tương ứng).
Mặt khác \[AM = BC\] (do \(\Delta AIM = \Delta BIC\)).
Do đó\[AM = AN\](cùng bằng \[BC\]).
Ba điểm \[A,{\rm{ }}M,{\rm{ }}N\] thẳng hàng và \[AM = AN\] nên \[A\] là trung điểm của \[MN\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Vì \[\Delta ACD\] có \(\widehat A\) tù nên \(\widehat A\) là góc lớn nhất trong ba góc nên \[CD\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất). Do đó \[CD > CA\] (1) Ta có: \(\widehat {BDC} > \widehat A\) (do \(\widehat {BDC}\) là góc ngoài của \[\Delta ACD\]) Do đó \(\widehat {BDC}\) tù. |
|
Vì \[\Delta BDC\] có \(\widehat {BDC}\) tù nên \(\widehat {BDC}\) là góc lớn nhất trong ba góc.
Nên đó \[BC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).
Do đó \[CB > CD\] (2)
Từ (1) và (2) suy ra \[CB > CD > CA\].
b) Ta có: \(\widehat {DEC} > \widehat A\) (do \(\widehat {DEC}\) là góc ngoài của tam giác \[AED\]).
Suy ra \(\widehat {DEC}\) tù.
Vì \[\Delta DEC\] có \(\widehat {DEC}\) tù nên \(\widehat {DEC}\) là góc lớn nhất trong ba góc.
Nên \[DC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).
Do đó \[DC > DE\].
Mà \[CB > CD\] (theo câu a) nên \[CB > DE\].
Do đó \[DE < BC\].
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có \(MA = MD\) (giả thiết) \(MB = MC\) (vì \[M\] là trung điểm) \(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh) Do đó \(\Delta ABM = \Delta DCM\) (c.g.c) b) Từ câu a: \(\Delta ABM = \Delta DCM\). Suy ra \(\widehat {BAM} = \widehat {MDC}\). Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau). |
|
c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).
Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)
Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).
Vậy \(AM < \frac{{AB + AC}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho tam giác \(ABC\) có góc \[A\] tù. Trên cạnh \[AB\] lấy điểm \[D\]. a) So sánh các đoạn thẳng \(CA,\,\,CD\) và \[CB\]. b) Trên cạnh \[AC\] lấy điểm \[E\]. So sánh \[DE\] và \[BC\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/6-1764575076.png)
