Câu hỏi:

01/12/2025 2 Lưu

Cho 4 số thực \(a\), \(b\), \(c\), \(d\) khác 0 thỏa mãn \(a + b + c + d \ne 0\)

\(\frac{{2a + b + c + d}}{c} = \frac{{a + 2b + c + d}}{b} = \frac{{a + b + 2c + d}}{c} = \frac{{a + b + c + 2d}}{d}\).

Tìm giá trị của biểu thức \(M\), biết \(M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có

\(\frac{{2a + b + c + d}}{a} = \frac{{a + 2\;b + c + d}}{b} = \frac{{a + b + 2c + d}}{c} = \frac{{a + b + c + 2\;d}}{{\;d}}\)

\(\frac{{2a + b + c + d}}{a} - 1 = \frac{{a + 2\;b + c + d}}{b} - 1 = \frac{{a + b + 2c + d}}{c} - 1 = \frac{{a + b + c + 2\;d}}{{\;d}} - 1\)

\(\frac{{2a + b + c + d - a}}{a} = \frac{{a + 2\;b + c + d - b}}{b} = \frac{{a + b + 2c + d - c}}{c} = \frac{{a + b + c + 2\;d - d}}{{\;d}}\)

\(\frac{{a + b + c + d}}{a} = \frac{{a + b + c + d}}{b} = \frac{{a + b + c + d}}{c} = \frac{{a + b + c + d}}{{\;d}}\) \(\left( 1 \right)\)

\(a + b + c + d \ne 0\) nên từ \(\left( 1 \right)\) suy ra: \(\frac{1}{a} = \frac{1}{b} = \frac{1}{c} = \frac{1}{{\;d}}\) hay \(a = b = c = d\).

Với \(a\), \(b\), \(c\), \(d\) khác 0, thay \(b = a\); \(c = a\)\(d = a\) vào biểu thức \(M\) ta được:

\(M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}} = \frac{{2a}}{{2a}} + \frac{{2a}}{{2a}} + \frac{{2a}}{{2a}} + \frac{{2a}}{{2a}} = 1 + 1 + 1 + 1 = 4\).

Vậy \(M = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi \[x{\rm{ }}\left( {{\rm{cm}}} \right)\] là chiều rộng hình chữ nhật.

Khi đó, ta có:

Chiều dài hình chữ nhật là: \[x - 2 + 3 = x + 1{\rm{ (cm)}}\]

Diện tích hình chữ nhật là: \[\left( {x - 2} \right)\left( {x + 1} \right)\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Lời giải

Hướng dẫn giải

Chiều rộng hình chữ nhật \[x{\rm{ (cm)}}\]

Chiều dài hình chữ nhật là: \[x + 5{\rm{ }}\left( {{\rm{cm}}} \right)\]

Diện tích hình chữ nhật là: \[x\left( {x + 5} \right){\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\]

Thay \[x = 3\] vào biểu thức \[x\left( {x + 5} \right)\], ta có:

\[x\left( {x + 5} \right) = 3\left( {3 + 5} \right) = 24\].

Vậy diên tích hình chữ nhật là \[24{\rm{ c}}{{\rm{m}}^{\rm{2}}}{\rm{.}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP