Câu hỏi:

02/12/2025 2 Lưu

Cho tam giác \(ABC\) có góc \[A\] tù. Trên cạnh \[AB\] lấy điểm \[D\].

a) So sánh các đoạn thẳng \(CA,\,\,CD\)\[CB\].

b) Trên cạnh \[AC\] lấy điểm \[E\]. So sánh \[DE\] \[BC\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Vì \[\Delta ACD\] có \(\widehat A\) tù nên \(\widehat A\) là góc lớn nhất trong ba góc nên \[CD\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[CD > CA\]          (1)

Ta có: \(\widehat {BDC} > \widehat A\) (do \(\widehat {BDC}\) là góc ngoài của \[\Delta ACD\])

Do đó \(\widehat {BDC}\) tù.

 Cho tam giác \(ABC\) có góc \[A\] tù. Trên cạnh \[AB\] lấy điểm \[D\]. a) So sánh các đoạn thẳng \(CA,\,\,CD\) và \[CB\]. b) Trên cạnh \[AC\] lấy điểm \[E\]. So sánh \[DE\] và \[BC\]. (ảnh 1)

Vì \[\Delta BDC\] có \(\widehat {BDC}\) tù nên \(\widehat {BDC}\) là góc lớn nhất trong ba góc.

Nên đó \[BC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[CB > CD\]          (2)

Từ (1) và (2) suy ra \[CB > CD > CA\].

b) Ta có: \(\widehat {DEC} > \widehat A\) (do \(\widehat {DEC}\) là góc ngoài của tam giác \[AED\]).

Suy ra \(\widehat {DEC}\) tù.

Vì \[\Delta DEC\] có \(\widehat {DEC}\) tù nên \(\widehat {DEC}\) là góc lớn nhất trong ba góc.

Nên \[DC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[DC > DE\].

Mà \[CB > CD\] (theo câu a) nên \[CB > DE\].

Do đó \[DE < BC\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số học sinh tổ một, tổ hai, tổ ba lần lượt là \(a;\,\,b;\,\,c\) (học sinh) \(\left( {a,\,b,\,c\, \in {\mathbb{N}^*},\,\,a,\,b,\,c < 52} \right)\).

Vì lớp 7A có 52 học sinh được chia làm ba tổ nên ta có: \(a + b + c = 52\) (1).

Số học sinh tổ một, tổ hai, tổ ba sau khi thêm bớt lần lượt là \(a - 1,\,\,b - 2,\,\,c + 3\) (học sinh).

Vì tổ một bớt đi 1 học sinh, tổ hai bớt đi 2 học sinh, tổ ba thêm vào 3 học sinh thì số học sinh của tổ một, tổ hai, tổ ba tỉ lệ nghịch với \(3;\,\,4;\,\,2\) do đó, ta có \(3\left( {a - 1} \right) = 4\left( {a - 2} \right) = 2\left( {c + 3} \right)\).

Suy ra \(\frac{{a - 1}}{4} = \frac{{b - 2}}{3} = \frac{{c + 3}}{6}\)   (2)

Từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{{a - 1}}{4} = \frac{{b - 2}}{3} = \frac{{c + 3}}{6} = \frac{{a - 1 + b - 2 + c + 3}}{{4 + 3 + 6}} = \frac{{52}}{{13}} = 4\)

Suy ra \(a - 1 = 16;\,\,b - 2 = 12;\,\,c + 3 = 24\).

Do đó, \(a = 17;\,\,b = 14;\,\,c = 21\).

Vậy số học sinh tổ một, tổ hai, tổ ba của lớp 7A lần lượt là 17 học sinh; 14 học sinh và 21 học sinh.

Lời giải

Hướng dẫn giải

Gọi tổng số vở ba lớp 7A, 7B, 7C nhận được là \[x\] \[\left( {x \in {\mathbb{N}^*}} \right)\].

Gọi số vở dự định chia cho ba lớp 7A, 7B, 7C lần lượt là \(a,b,c\).

Theo đề, ban đầu chia vở cho ba lớp theo tỉ lệ \(7;6;5\) nên ta có:

\(\frac{a}{7} = \frac{b}{6} = \frac{c}{5} = \frac{{a + b + c}}{{7 + 6 + 5}} = \frac{x}{{18}}\).

Suy ra \(a = \frac{{7x}}{{18}};b = \frac{{6x}}{{18}};c = \frac{{5x}}{{18}}\) (1)

Gọi số vở chia cho ba lớp 7A, 7B, 7C sau khi thay đổi là \(a',b',c'\). Ta có:

\(\frac{{a'}}{6} = \frac{{b'}}{5} = \frac{{c'}}{4} = \frac{{a' + b' + c'}}{{6 + 5 + 4}} = \frac{x}{{15}}\)

Suy ra \(a' = \frac{{6x}}{{15}};b' = \frac{{5x}}{{15}};c' = \frac{{4x}}{{15}}\) (2)

So sánh (1) và (2) nhận thấy \(a < a';b = b',c > c'\).

Do đó, lớp nhận được ít hơn 12 quyển là lớp 7C.

Suy tra \(\frac{{5x}}{{18}} - \frac{{4x}}{{15}} = 12\) hay \(\frac{x}{{90}} = 12\) nên \(x = 1080\) (quyển).

Số vở lớp 7A nhận trong thực tế là: \(a' = \frac{{6x}}{{15}} = \frac{{6.1080}}{{15}} = 432\) (quyển)

Số vở lớp 7B nhận trong thực tế là: \(b' = \frac{{5x}}{{15}} = \frac{{5.1080}}{{15}} = 360\) (quyển)

Số vở lớp 7C nhận trong thực tế là: \(c' = \frac{{4x}}{{15}} = \frac{{4.1080}}{{15}} = 288\) (quyển)

Vậy trong thực tế ba lớp 7A, 7B, 7C nhận được lần lượt 432 quyển, 360 quyển và 288 quyển.