Cho tam giác \(ABC\), gọi \(M\) là trung điểm của \(BC\). Trên tia đối của tia \(MA\) lấy điểm \(D\) sao cho \(MA = MD\). Chứng minh rằng:
a) \(\Delta ABM = \Delta DCM\);
b) \(AB\,{\rm{//}}\,CD\);
c) \(AM < \frac{{AB + AC}}{2}\).
Cho tam giác \(ABC\), gọi \(M\) là trung điểm của \(BC\). Trên tia đối của tia \(MA\) lấy điểm \(D\) sao cho \(MA = MD\). Chứng minh rằng:
a) \(\Delta ABM = \Delta DCM\);
b) \(AB\,{\rm{//}}\,CD\);
c) \(AM < \frac{{AB + AC}}{2}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có \(MA = MD\) (giả thiết) \(MB = MC\) (vì \[M\] là trung điểm) \(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh) Do đó \(\Delta ABM = \Delta DCM\) (c.g.c) b) Từ câu a: \(\Delta ABM = \Delta DCM\). Suy ra \(\widehat {BAM} = \widehat {MDC}\). Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau). |
|
c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).
Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)
Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).
Vậy \(AM < \frac{{AB + AC}}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số học sinh tổ một, tổ hai, tổ ba lần lượt là \(a;\,\,b;\,\,c\) (học sinh) \(\left( {a,\,b,\,c\, \in {\mathbb{N}^*},\,\,a,\,b,\,c < 52} \right)\).
Vì lớp 7A có 52 học sinh được chia làm ba tổ nên ta có: \(a + b + c = 52\) (1).
Số học sinh tổ một, tổ hai, tổ ba sau khi thêm bớt lần lượt là \(a - 1,\,\,b - 2,\,\,c + 3\) (học sinh).
Vì tổ một bớt đi 1 học sinh, tổ hai bớt đi 2 học sinh, tổ ba thêm vào 3 học sinh thì số học sinh của tổ một, tổ hai, tổ ba tỉ lệ nghịch với \(3;\,\,4;\,\,2\) do đó, ta có \(3\left( {a - 1} \right) = 4\left( {a - 2} \right) = 2\left( {c + 3} \right)\).
Suy ra \(\frac{{a - 1}}{4} = \frac{{b - 2}}{3} = \frac{{c + 3}}{6}\) (2)
Từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{{a - 1}}{4} = \frac{{b - 2}}{3} = \frac{{c + 3}}{6} = \frac{{a - 1 + b - 2 + c + 3}}{{4 + 3 + 6}} = \frac{{52}}{{13}} = 4\)
Suy ra \(a - 1 = 16;\,\,b - 2 = 12;\,\,c + 3 = 24\).
Do đó, \(a = 17;\,\,b = 14;\,\,c = 21\).
Vậy số học sinh tổ một, tổ hai, tổ ba của lớp 7A lần lượt là 17 học sinh; 14 học sinh và 21 học sinh.
Lời giải
Hướng dẫn giải
Gọi tổng số vở ba lớp 7A, 7B, 7C nhận được là \[x\] \[\left( {x \in {\mathbb{N}^*}} \right)\].
Gọi số vở dự định chia cho ba lớp 7A, 7B, 7C lần lượt là \(a,b,c\).
Theo đề, ban đầu chia vở cho ba lớp theo tỉ lệ \(7;6;5\) nên ta có:
\(\frac{a}{7} = \frac{b}{6} = \frac{c}{5} = \frac{{a + b + c}}{{7 + 6 + 5}} = \frac{x}{{18}}\).
Suy ra \(a = \frac{{7x}}{{18}};b = \frac{{6x}}{{18}};c = \frac{{5x}}{{18}}\) (1)
Gọi số vở chia cho ba lớp 7A, 7B, 7C sau khi thay đổi là \(a',b',c'\). Ta có:
\(\frac{{a'}}{6} = \frac{{b'}}{5} = \frac{{c'}}{4} = \frac{{a' + b' + c'}}{{6 + 5 + 4}} = \frac{x}{{15}}\)
Suy ra \(a' = \frac{{6x}}{{15}};b' = \frac{{5x}}{{15}};c' = \frac{{4x}}{{15}}\) (2)
So sánh (1) và (2) nhận thấy \(a < a';b = b',c > c'\).
Do đó, lớp nhận được ít hơn 12 quyển là lớp 7C.
Suy tra \(\frac{{5x}}{{18}} - \frac{{4x}}{{15}} = 12\) hay \(\frac{x}{{90}} = 12\) nên \(x = 1080\) (quyển).
Số vở lớp 7A nhận trong thực tế là: \(a' = \frac{{6x}}{{15}} = \frac{{6.1080}}{{15}} = 432\) (quyển)
Số vở lớp 7B nhận trong thực tế là: \(b' = \frac{{5x}}{{15}} = \frac{{5.1080}}{{15}} = 360\) (quyển)
Số vở lớp 7C nhận trong thực tế là: \(c' = \frac{{4x}}{{15}} = \frac{{4.1080}}{{15}} = 288\) (quyển)
Vậy trong thực tế ba lớp 7A, 7B, 7C nhận được lần lượt 432 quyển, 360 quyển và 288 quyển.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
