Cho \(\Delta ABC\) vuông tại \(A\). Trên cạnh \(BC\) lấy điểm \(E\) sao cho \(BE = BA\), trên tia \(BA\) lấy điểm \(F\) sao cho \(BF = BC\). Kẻ \(BD\) là phân giác của \(\widehat {ABC}\,\,\left( {D \in AC} \right)\). Chứng minh rằng:
a) \(DE \bot BC\);
b) \(AD < DC\);
c) \(\Delta ADF = \Delta EDC.\)
Cho \(\Delta ABC\) vuông tại \(A\). Trên cạnh \(BC\) lấy điểm \(E\) sao cho \(BE = BA\), trên tia \(BA\) lấy điểm \(F\) sao cho \(BF = BC\). Kẻ \(BD\) là phân giác của \(\widehat {ABC}\,\,\left( {D \in AC} \right)\). Chứng minh rằng:
a) \(DE \bot BC\);
b) \(AD < DC\);
c) \(\Delta ADF = \Delta EDC.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) Xét \(\Delta ABD\) và \[\Delta EBD\] có \(BE = BA\) (gt); \(\widehat {ABD} = \widehat {EBD}\) (vì \(BD\) là tia phân giác \(\widehat {ABE}\)); cạnh \(BD\) chung. Do đó \(\Delta ABD = \Delta EBD\) (c.g.c). Suy ra \(\widehat {BAD} = \widehat {BED} = 90^\circ \) nên \(DE \bot BC\). b) Xét tam giác \[ECD\] vuông tại \[E\] nên cạnh huyền \[DC > DE\]. Mà \[DE = AD\] (vì \(\Delta ABD = \Delta EBD\)) nên \(AD < DC.\) c) Ta có \(BF = BC\) mà \(BE = BA\) nên \(AF = EC\). Xét \[\Delta ADF\] và \[\Delta EDC\] có: \(AF = EC\) (cmt); \[\widehat {DAF} = \widehat {DEC} = 90^\circ \]; |
|
\(AD = DE\) (vì \(\Delta ABD = \Delta EBD\));
Do đó \[\Delta ADF = \Delta EDC\,\,{\rm{(c}}{\rm{.g}}{\rm{.c)}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có \(MA = MD\) (giả thiết) \(MB = MC\) (vì \[M\] là trung điểm) \(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh) Do đó \(\Delta ABM = \Delta DCM\) (c.g.c) b) Từ câu a: \(\Delta ABM = \Delta DCM\). Suy ra \(\widehat {BAM} = \widehat {MDC}\). Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau). |
|
c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).
Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)
Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).
Vậy \(AM < \frac{{AB + AC}}{2}\).
Lời giải
Hướng dẫn giải
Theo bài ra, ta có: \(\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\);
\(\frac{{a + b}}{{ab}} = \frac{{b + c}}{{bc}} = \frac{{c + a}}{{ca}}\);
\(\frac{1}{a} + \frac{1}{b} = \frac{1}{b} + \frac{1}{c} = \frac{1}{c} + \frac{1}{a}\).
Suy ra \(\frac{1}{a} = \frac{1}{c}\); \(\frac{1}{b} = \frac{1}{a}\) hay \(a = b = c\).
Với \(a\), \(b\), \(c\) là ba số khác 0, thay \(b = a\); \(c = a\) vào biểu thức \(M\), ta được:
\(M = \frac{{ab + bc + ca}}{{{a^2} + {b^2} + {c^2}}} = \frac{{{a^2} + {a^2} + {a^2}}}{{{a^2} + {a^2} + {a^2}}} = \frac{{3{a^2}}}{{3{a^2}}} = 1\).
Vậy \(M = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

