Câu hỏi:

02/12/2025 14 Lưu

Cho tứ diện \(ABCD\). Gọi \(N\) là trung điểm của \(CD\), gọi \(G\)là trọng tâm của tam giác \(BCD\). Giao tuyến của hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {GAB} \right)\) là

A. \(AN\).   

B. \(AG\). 
C. \(GN\). 
D. \(AB\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tứ diện ABCD. Gọi N là trung điểm của CD, gọi G là trọng tâm của tam giác BCD. Giao tuyến của hai mặt phẳng (ACD) và (GAB) là (ảnh 1)

Ta có \(N \in BG \subset \left( {GAB} \right),N \in CD \subset \left( {ACD} \right)\).

Suy ra \(AN = \left( {GAB} \right) \cap \left( {ACD} \right)\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CD và M là điểm trên cạnh SB sao cho SM/SB = 1/3. Gọi N là giao điểm của MD và mặt phẳng (SIK). Tính tỉ số ND/NM. (ảnh 1)

Ta có \(M\) là điểm trên cạnh \(SB\), \(\frac{{SM}}{{SB}} = \frac{1}{3}\) nên \(\frac{{MB}}{{MS}} = 2\).

\(IK//BD\) nên \(IK//\left( {SBD} \right)\). Suy ra \(\left( {SBD} \right) \cap \left( {SIK} \right) = Sx,Sx//IK//BD\).

Trong \(\left( {SBD} \right),DM \cap Sx = N\). \(N\)là giao điểm của \(DM\) và \(\left( {SIK} \right)\).

Trong \(\left( {SBD} \right)\), có \(Sx//BD\) nên hai tam giác \(SMN\) và \(BMD\) đồng dạng.

Do đó \(\frac{{MD}}{{MN}} = 2 \Rightarrow \frac{{ND}}{{NM}} = 3\).

Trả lời: 3.

Lời giải

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Trên cạnh SA, lấy điểm M sao cho MA = 2MS. Phép chiếu song song theo phương MO lên mặt phẳng (ABCD) biến điểm S thành điểm N. Tính CN/CA. (ảnh 1)

Trong mặt phẳng \(\left( {SAC} \right)\), kẻ \(SN//MO\left( {N \in AC} \right)\).

Khi đó \(N\) là hình chiếu của điểm \(S\) lên mặt phẳng \(\left( {ABCD} \right)\)theo phương chiếu \(MO\).

Vì \(MO//SN\) nên \(\frac{{AM}}{{MS}} = \frac{{AO}}{{ON}} = 2 \Rightarrow \frac{{OC}}{{ON}} = 2 \Rightarrow \frac{{CN}}{{CA}} = \frac{1}{4} = 0,25\).

Trả lời: 0,25.

Câu 3

a) Đường thẳng \(ON\) và \(SA\) cắt nhau.

Đúng
Sai

b) \(MD//AC\).

Đúng
Sai

c) \(GK//ON\) với \(G\) là giao điểm của đường thẳng \(MN\) với mặt phẳng \(\left( {SAD} \right)\).

Đúng
Sai
d) Tỉ số \(\frac{{GM}}{{GN}} = 3\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là \(SO\) (\(O\) là giao điểm của \(AC\) và \(BD\)).

B. Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) là đường trung bình của \(ABCD\).

C. Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là \(SI\) (\(I\) là giao điểm của \(AD\) và \(BC\)).

D. Hình chóp \(S.ABCD\) có 4 mặt bên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(4\).  

B. \(12\).  
C. \(8\). 
D. \(16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP