Câu hỏi:

02/12/2025 84 Lưu

Cho hai hàm số \(y = {a^x},y = {b^x}\) với \(a,b\) là hai số thực dương khác 1, lần lượt có đồ thị là \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) như hình bên. Mệnh đề nào dưới đây là đúng?
Cho hai hàm số y = a mũ x,y = b mũ x với a,b là hai số thực dương khác 1, lần lượt có đồ thị là (C1) và (C2) như hình bên. Mệnh đề nào dưới đây là đúng? (ảnh 1)

A. \(0 < a < b < 1\).  

B. \(0 < b < a < 1\). 
C. \(0 < a < 1 < b\).
D. \[0 < b < 1 < a\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \(y = {a^x}\) đồng biến nên \(a > 1\).

Hàm số \(y = {b^x}\) nghịch biến nên \(0 < b < 1\).

Do đó \[0 < b < 1 < a\]. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số \(D = \left[ { - \frac{3}{2}; + \infty } \right)\).

Đúng
Sai

b) Nghiệm của phương trình \(f\left( x \right) = 1\) là \(x = 0\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f\left( x \right) < 2\) có đúng 3 số nguyên.

Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.
Đúng
Sai

Lời giải

a) Điều kiện \(2x + 3 > 0 \Leftrightarrow x >  - \frac{3}{2}\).

Tập xác định của hàm số \(D = \left( { - \frac{3}{2}; + \infty } \right)\).

b) \(f\left( x \right) = 1\) \( \Leftrightarrow {\log _3}\left( {2x + 3} \right) = 1\)\( \Leftrightarrow 2x + 3 = 3\)\( \Leftrightarrow x = 0\).

c) Ta có \(f\left( x \right) < 2 \Leftrightarrow {\log _3}\left( {2x + 3} \right) < 2\)\( \Leftrightarrow 2x + 3 < 9\)\( \Leftrightarrow x < 3\).

Kết hợp với điều kiện ta có \(S = \left( { - \frac{3}{2};3} \right)\), mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;0;1;2} \right\}\).

Vậy có 4 giá trị nguyên của \(x\) để \(f\left( x \right) < 2\).

d) Vì hàm số \(y = f\left( x \right) = {\log _3}\left( {2x + 3} \right)\) đồng biến trên \(\left( { - \frac{3}{2}; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = 1;\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = 2\).

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.

Đáp án: a) Sai;      b) Đúng;      c) Sai;       d) Đúng.

Câu 2

A. \(\frac{{13}}{6}\). 

B. \(\frac{5}{6}\). 
C. \( - \frac{5}{6}\). 
D. \[\frac{{ - 13}}{6}\].

Lời giải

Ta có \(\frac{{\sqrt {2\sqrt[3]{4}} }}{{{{16}^{0,75}}}}\)\( = \frac{{\sqrt {2 \cdot {2^{\frac{2}{3}}}} }}{{{2^{4 \cdot }}^{0,75}}}\)\( = \frac{{\sqrt {{2^{\frac{5}{3}}}} }}{{{2^3}}}\)\[ = \frac{{{2^{\frac{5}{6}}}}}{{{2^3}}}\]\[ = {2^{\frac{{ - 13}}{6}}}\]. Suy ra \(m =  - \frac{{13}}{6}\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\log _a}b > c \Leftrightarrow b > c\). 

B. \({\log _a}b > {\log _a}c \Leftrightarrow b > c\). 

C. \({a^b} > {a^c} \Leftrightarrow b > c\).  
D. \[{\log _a}b < {\log _a}c \Leftrightarrow b < c\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đồ thị hàm số đã cho cắt đường thẳng \(y =  - x + 1\) tại điểm có hoành độ dương.

Đúng
Sai

b) Hàm số cho bởi công thức \(y = {3^x}\).

Đúng
Sai

c) Hàm số đã cho nghịch biến trên khoảng (0; 1).

Đúng
Sai
d) Đồ thị hàm số đã cho cắt đường thẳng \(y = \frac{1}{3}\) tại điểm có hoành độ không âm.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP