Câu hỏi:

02/12/2025 9 Lưu

Bất phương trình \({\log _2}\left( {2x - 1} \right) < {\log _2}\left( {14 - x} \right)\) có bao nhiêu nghiệm nguyên?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện \(\left\{ \begin{array}{l}2x - 1 > 0\\14 - x > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > \frac{1}{2}\\x < 14\end{array} \right.\)\( \Leftrightarrow \frac{1}{2} < x < 14\).

Ta có \({\log _2}\left( {2x - 1} \right) < {\log _2}\left( {14 - x} \right)\)\( \Leftrightarrow 2x - 1 < 14 - x\)\( \Leftrightarrow 3x < 15 \Leftrightarrow x < 5\).

Kết hợp với điều kiện ta có nghiệm của bất phương trình là \(\frac{1}{2} < x < 5\).

Mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ {1;2;3;4} \right\}\).

Vậy bất phương trình có 4 nghiệm nguyên.

Trả lời: 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(22 + 50{e^{\frac{{ - 1}}{8}t}} = 45\)\( \Leftrightarrow {e^{\frac{{ - 1}}{8}t}} = \frac{{23}}{{50}}\)\( \Leftrightarrow \frac{{ - 1}}{8}t = \ln \frac{{23}}{{50}}\)\( \Leftrightarrow t = \ln \frac{{23}}{{50}}:\left( {\frac{{ - 1}}{8}} \right) \approx 6,21\).

Vậy sau khoảng 6,21 phút kể từ lúc pha chế xong thì nhiệt độ của đồ uống đó là 45°C.

Trả lời: 6,21.

Lời giải

Hàm số \(y = {c^x}\) nghịch biến nên \(0 < c < 1\).

Hàm số \(y = {b^x};y = {\log _a}x\) đồng biến nên \(a > 1;b > 1\).

Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = {b^x}\) tại điểm có hoành độ là \(x = {\log _b}2 \in \left( {0;1} \right)\).

Suy ra \(b > 2\).

Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = {\log _a}x\) tại điểm có hoành độ \(x = {a^2} \in \left( {2;3} \right)\).

Do đó \(c < a < b\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(m > 1\).

Đúng
Sai

b) \(4m + n = 4\).

Đúng
Sai

c) Biểu thức \(S = \frac{1}{m} + \frac{1}{n}\) đạt giá trị nhỏ nhất bằng \(\frac{5}{4}\).

Đúng
Sai
d) \({\log _a}b = \frac{n}{{4m}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP