Câu hỏi:

03/12/2025 13 Lưu

Cho hình chóp \[S.ABCD\,\], đáy \[ABCD\] là hình vuông có cạnh bằng 6. Trên các cạnh \[SA,SB\] lần lượt lấy \[M,N\] sao cho \[\frac{{SM}}{{SA}} = \frac{2}{3}\], \[\frac{{SN}}{{SB}} = \frac{2}{3}.\]

a. Chứng minh rằng\[MN\,{\rm{//}}\,\left( {ABCD} \right)\].

b. Một mặt phẳng \[\left( \alpha \right)\] đi qua \[M,N\] song song với \[AB\]\[BC\]. Tính diện tích thiết diện của \[\left( \alpha \right)\] và hình chóp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD đáy ABCD là hình vuông có cạnh bằng 6 (ảnh 1)

a. Ta có \[\frac{{SM}}{{SA}} = \frac{2}{3}\], \[\frac{{SN}}{{SB}} = \frac{2}{3}.\]\[ \Rightarrow \]\[MN\]//\[AB\]\[ \Rightarrow MN//\left( {ABCD} \right).\]

b. Ta có \[\left( \alpha \right)\parallel AB\]\[BC\] suy ra \[\left( \alpha \right)\parallel \left( {ABCD} \right).\]

Giả sử \[\left( \alpha \right)\] cắt các mặt bên \[\left( {SAB} \right),\,\,\left( {SBC} \right),\,\,\left( {SCD} \right),\,\,\left( {SDA} \right)\] lần lượt tại các điểm M, \[N,\,\,P,\,\,Q\] với \[N \in SB,\,\,P \in SC,\,\,Q \in SD\,\]suy ra \[\left( \alpha \right) \equiv \left( {MNPQ} \right)\,.\]

Khi đó \[MN\]//\[AB\]\[ \Rightarrow \,\,\,\frac{{SM}}{{SA}} = \frac{{MN}}{{AB}} = \frac{2}{3}\,.\]

Tương tự, ta có được \[\frac{{NP}}{{BC}} = \frac{{PQ}}{{CD}} = \frac{{QM}}{{DA}} = \frac{2}{3}\]\[MNPQ\] là hình vuông.

Suy ra \[{S_{MNPQ}} = {\left( {\frac{2}{3}} \right)^2}{S_{ABCD}} = \frac{4}{9}{S_{ABCD}} = \frac{4}{9}.6.6 = 16.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Điểm \[K\] (với \[O\] là trung điểm của \[BD\]\[K = SO \cap AI\]).
B. Điểm \[I\].
C. Điểm \[N\] (với \[O\] là giao điểm của \[AC\]\[BD\], \[N\] là trung điểm của \[SO\]).
D. Điểm \[M\] (với \[O\] là giao điểm của \[AC\]\[BD\], \[M\] là giao điểm \[SO\]\[AI\]).

Lời giải

Chọn D

Cho hình chóp S.ABCD có I là trung điểm của SC, giao điểm của AI và SBD là (ảnh 1)

Gọi \[O\] là giao điểm của \[AC\]\[BD\], \[M\] là giao điểm \[SO\]\[AI\].

Ta có \(M = AI \cap \left( {SBD} \right)\).

Lời giải

a. \(\lim ( - {n^3} + n - 3) = \lim {n^3}( - 1 + \frac{1}{{{n^2}}} - \frac{3}{{{n^3}}}) = - \infty \)

b. \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 5x + 6}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \left( {x - 3} \right) = - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Giao điểm của \(MN\) và \(\left( {SBD} \right)\) là giao điểm của \(MN\) và \(SB\,.\)
B. Đường thẳng \(MN\) không cắt mặt phẳng \(\left( {SBD} \right)\).
C. Giao điểm của \(MN\) và \(\left( {SBD} \right)\) là giao điểm của \(MN\) và \(SI\), trong đó \(I\) là giao điểm của \(CM\) và\[BD\].
D. Giao điểm của \(MN\) và \(\left( {SBD} \right)\) là giao điểm của \(MN\) và \(BD\,.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \( - \infty \).    
B. \(1\).   
C. \( - \frac{2}{3}\). 
D. \( + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[PQ{\rm{// }}(SAB)\;\]     
B. \[PQ{\rm{// }}(SBC)\;\]  
C. \[PQ{\rm{// }}(ABCD)\;\]     
D. \[PQ{\rm{// }}(SCD)\;\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP