Câu hỏi:

03/12/2025 80 Lưu

B. Tự luận

Cho hình chóp \(S.ABC\), \(G\) là trọng tâm \(\Delta ABC\) và \(M\) là điểm trên cạnh \(SB\) sao cho \(BM = 2MS\). Chứng minh đường thẳng \(MG\) song song với mặt phẳng \(\left( {SAC} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABC, G là trọng tâm tam giác ABC và M là điểm trên cạnh SB sao cho BM = 2MS. Chứng minh đường thẳng MG song song với mặt phẳng (SAC). (ảnh 1)

Gọi \(P\) là trung điểm của \(AC\).

Theo tính chất trọng tâm ta có \(\frac{{BG}}{{BP}} = \frac{2}{3}\) mà \(\frac{{BM}}{{BS}} = \frac{2}{3}\) nên \(\frac{{BG}}{{BP}} = \frac{{BM}}{{BS}}\) \( \Rightarrow MG//SP\).

Lại có \(SP \subset \left( {SAC} \right)\) nên \(MG//\left( {SAC} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BC và CD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM và (SIK). Tính tỉ số MF/MD. (ảnh 1)

\(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\) nên \(IK\) là đường trung bình của \(\Delta BCD\).

Suy ra \(IK//BD\).

Ta có \(\left. \begin{array}{l}S \in \left( {SIK} \right) \cap \left( {SBD} \right)\\IK//BD\end{array} \right\} \Rightarrow \)giao tuyến của hai mặt phẳng này là đường thẳng qua \(S\) và song song với \(BD\) cắt \(MD\) tại \(F\).

Khi đó \(F = MD \cap \left( {SIK} \right)\).

Dễ dàng chứng minh \(SDBF\) là hình bình hành.

Ta có \(SF//BD\)\( \Rightarrow \frac{{MF}}{{MD}} = \frac{{MS}}{{MB}} = 1\).

Trả lời: 1.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm cạnh BC,( alpha) là mặt phẳng A,M và song song với SD. Mặt phẳng (alpha) cắt SB tại N, tính tỉ số SN/SB (ảnh 1)

Gọi \(I\) là giao điểm của \(AM\) và \(BD\) nên \(I\) là trọng tâm tam giác \(ABC\).

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3} \Rightarrow \frac{{BI}}{{BD}} = \frac{1}{3}\).

Ta có \(\left( \alpha  \right)\) và mặt phẳng \(\left( {SBD} \right)\) có chung điểm \(I,\left( \alpha  \right)//SD,SD \subset \left( {SBD} \right)\).

Nên giao tuyến của \(\left( \alpha  \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(I\) song song với \(SD\) cắt \(SB\) tại \(N\).

Ta có tam giác \(BIN\) đồng dạng với tam giác \(BDS\).

Suy ra \(\frac{{BN}}{{BS}} = \frac{{BI}}{{BD}} = \frac{1}{3}\) hay \(\frac{{SN}}{{SB}} = \frac{{ID}}{{BD}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) \(MN//\left( {SCD} \right)\).

Đúng
Sai

b) Nếu \(E\) là giao điểm của \(\left( {MNG} \right)\) và \(BC\) thì tứ giác \(MNEF\) là hình thang đáy lớn là \(EF\) và \(EF = \frac{3}{2}MN\)

Đúng
Sai

c) \(SC\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).

Đúng
Sai
d) \(MG//SC\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP