Giải các phương trình sau:
h) \(\frac{{2x - 1}}{3} - \frac{{x + 7}}{4} = \frac{{5 - 3x}}{2}\)
Giải các phương trình sau:
h) \(\frac{{2x - 1}}{3} - \frac{{x + 7}}{4} = \frac{{5 - 3x}}{2}\)
Quảng cáo
Trả lời:
h) \(\frac{{2x - 1}}{3} - \frac{{x + 7}}{4} = \frac{{5 - 3x}}{2}\)
\(\frac{{4\left( {2x - 1} \right)}}{{12}} - \frac{{3\left( {x + 7} \right)}}{{12}} = \frac{{6\left( {5 - 3x} \right)}}{{12}}\)
\(8x - 4 - 3x - 21 = 30 - 18x\)
\(8x - 3x + 18x = 30 + 4 + 21\)
\(23x = 55\)
\(x = \frac{{55}}{{23}}.\)
Vậy phương trình đã cho có nghiệm \(x = \frac{{55}}{{23}}.\)Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có \(9 - {x^2} = - \left( {{x^2} - 9} \right) = - \left( {x - 3} \right)\left( {x + 3} \right).\)
Khi đó, điều kiện xác định của biểu thức \(A\) là \(\left\{ \begin{array}{l}x + 3 \ne 0\\x - 3 \ne 0\\9 - {x^2} \ne 0\end{array} \right.\) hay \( \Leftrightarrow \left\{ \begin{array}{l}x \ne - 3\\x \ne 3\\ - \left( {x - 3} \right)\left( {x + 3} \right) \ne 0\end{array} \right.\)tức là \(x \ne - 3\) và \(x \ne 3.\)
b) Với \(x \ne - 3\) và \(x \ne 3,\) ta có:
\(A = \frac{3}{{x + 3}} + \frac{1}{{x - 3}} - \frac{{18}}{{9 - {x^2}}}\)\( = \frac{3}{{x + 3}} + \frac{1}{{x - 3}} + \frac{{18}}{{{x^2} - 9}}\)
\( = \frac{3}{{x + 3}} + \frac{1}{{x - 3}} + \frac{{18}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
\( = \frac{{3 \cdot \left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{1 \cdot \left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{18}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
\( = \frac{{3x - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{x + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{18}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
\( = \frac{{3x - 9 + x + 3 + 18}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)\( = \frac{{4x + 12}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)\( = \frac{{4\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)\( = \frac{4}{{x - 3}}.\)
Vậy với \(x \ne - 3\) và \(x \ne 3,\) thì \(A = \frac{4}{{x - 3}}.\)
c) Với \(x = - 1\) thoả mãn điều kiện xác định, thay vào biểu thức \(A = \frac{4}{{x - 3}},\) ta được:
\(A = \frac{4}{{ - 1 - 3}} = \frac{4}{{ - 4}} = - 1.\)
Vậy \(A = - 1\) khi \(x = - 1.\)
d) Với \(x \ne - 3\) và \(x \ne 3,\) thì \(A = \frac{4}{{x - 3}}.\)
Theo bài \(A = - 4,\) suy ra \(\frac{4}{{x - 3}} = - 4\)
Do đó \(x - 3 = - 1,\) nên \(x = 2\) (thoả mãn điều kiện xác định).
Vậy với \(x = 2\) thì \(A = - 4.\)
Lời giải
Hướng dẫn giải
a) Ta có:
⦁ \({x^2} - 2x = x\left( {x - 2} \right).\)
⦁ \[\frac{{x + 2}}{x} - \frac{x}{{x - 2}} = \frac{{\left( {x + 2} \right)\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} - \frac{{{x^2}}}{{x\left( {x - 2} \right)}} = \frac{{{x^2} - 4 - {x^2}}}{{x\left( {x - 2} \right)}} = \frac{{ - 4}}{{x\left( {x - 2} \right)}}.\]
Khi đó, điều kiện xác định của biểu thức \(D\) là \[\left\{ \begin{array}{l}{x^2} - 2x \ne 0\\x - 2 \ne 0\\\frac{{x + 2}}{x} - \frac{x}{{x - 2}} \ne 0\end{array} \right.,\] hay \[\left\{ \begin{array}{l}x\left( {x - 2} \right) \ne 0\\x \ne 2\\\frac{{ - 4}}{{x\left( {x - 2} \right)}} \ne 0\end{array} \right.,\] tức là \[\left\{ \begin{array}{l}x \ne 0\\x \ne 2\end{array} \right..\]
Với \(x \ne 0\) và \(x \ne 2,\) ta có:
\[D = \left( {\frac{{x - 4}}{{{x^2} - 2x}} + \frac{2}{{x - 2}}} \right):\left( {\frac{{x + 2}}{x} - \frac{x}{{x - 2}}} \right)\]
\[ = \left[ {\frac{{x - 4}}{{x\left( {x - 2} \right)}} + \frac{{2x}}{{x\left( {x - 2} \right)}}} \right]:\frac{{ - 4}}{{x\left( {x - 2} \right)}}\]
\[ = \frac{{\left( {x - 4} \right) + 2x}}{{x\left( {x - 2} \right)}} \cdot \frac{{x\left( {x - 2} \right)}}{{ - 4}} = \frac{{ - 3x + 4}}{4}.\]
Vậy với \(x \ne 0\) và \(x \ne 2,\) thì \(D = \frac{{ - 3x + 4}}{4}.\)
b) Với \(x \ne 0\) và \(x \ne 2,\) ta có: \(D > 0\) khi \(\frac{{ - 3x + 4}}{4} > 0,\) do đó \( - 3x + 4 > 0\) vì \(4 > 0.\)
Suy ra \(3x < 4,\) nên \(x < \frac{4}{3}.\)
Kết hợp với điều kiện \(x \ne 0\) và \(x \ne 2,\) ta được \(x < \frac{4}{3}\) và \(x \ne 0.\)
Vậy với \(x < \frac{4}{3}\) và \(x \ne 0\) thì \(D > 0.\)
c) Để \(D\) là số nguyên âm lớn nhất thì \(D = - 1,\) khi đó:
\(\frac{{ - 3x + 4}}{4} = - 1\)
\( - 3x + 4 = - 4\)
\( - 3x = - 8\)
\(x = \frac{8}{3}\) (thoả mãn điều kiện).
Vậy với \(x = \frac{8}{3}\) thì \(D\) có giá trị là số nguyên âm lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.