Câu hỏi:

04/12/2025 43 Lưu

Tìm \(m\) để phương trình sau \(2\left( {x - 1} \right) - mx = 3.\)

a) Vô nghiệm.

b) Vô số nghiệm.

c) Có nghiệm duy nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Xét phương trình \(2\left( {x - 1} \right) - mx = 3\)

 \(2x - 2 - mx = 3\)

 \(\left( {2 - m} \right)x = 5\)

a) Để phương trình đã cho vô nghiệm thì phương trình \(\left( {2 - m} \right)x = 5\) vô nghiệm, hay nó có dạng \(0x = b\) với \(b \ne 0,\) điều này xảy ra khi và chỉ khi \(2 - m = 0,\) hay \(m = 2.\)

b) Để phương trình đã cho vô số nghiệm thì phương trình \(\left( {2 - m} \right)x = 5\) vô số nghiệm, hay nó có dạng \(0x = 0,\) điều này là vô lí.

Vậy không có giá trị nào của \(m\) để phương trình vô số nghiệm.

c) Để phương trình đã cho có nghiệm duy nhất thì phương trình \(\left( {2 - m} \right)x = 5\) có nghiệm duy nhất, hay nó có dạng \(ax = b\) với \(a \ne 0,\) điều này xảy ra khi và chỉ khi \(2 - m \ne 0,\) hay \(m \ne 2.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Do \(ABCD\) là hình bình hành nên \(AB\,{\rm{//}}\,CD\)\(AD\,{\rm{//}}\,BC.\)

Xét \(\Delta ADK\) \(AD\,{\rm{//}}\,CN\) (do \(AD\,{\rm{//}}\,BC)\) nên ΔADKΔCNK (g.g).

b) Xét \(\Delta KAM\) \(AM\,{\rm{//}}\,CD\) (do \(AB\,{\rm{//}}\,CD)\) nên  (g.g).

Suy ra \(\frac{{KM}}{{KD}} = \frac{{KA}}{{KC}}\) (tỉ số cạnh tương ứng).

Cho hình bình hành \(ABCD\;\lef (ảnh 1)

 ΔADKΔCNK (câu a) nên \(\frac{{KD}}{{KN}} = \frac{{AK}}{{CK}}\) (tỉ số cạnh tương ứng).

Suy ra \(\frac{{KD}}{{KN}} = \frac{{KM}}{{KD}}\) nên \(K{D^2} = KM \cdot KN.\)

c) Do ΔADKΔCNK nên \(\frac{{AK}}{{CK}} = \frac{{AD}}{{CN}}\) (tỉ số cạnh tương ứng).

Do ΔKAMΔKCD nên \(\frac{{AK}}{{CK}} = \frac{{AM}}{{CD}}\) (tỉ số cạnh tương ứng).

Suy ra \(\frac{{AD}}{{CN}} = \frac{{AM}}{{CD}}\) hay \(\frac{9}{{CN}} = \frac{6}{{10}},\) do đó \(CN = \frac{{9 \cdot 10}}{6} = 15\) (cm).

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ADC\)\(\Delta BEC\) có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ \)\(\widehat {ACB}\) là góc chung.

Do đó ΔADCΔBEC (g.g).

b) Xét \(\Delta HEA\)\(\Delta HDB\) có:

\(\widehat {HEA} = \widehat {HDB} = 90^\circ \)\(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh)

Do đó ΔHEAΔHDB (g.g).

Khi đó \(\frac{{ (ảnh 1)

Suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\) (tỉ số cạnh tương ứng) nên \(HE \cdot HB = HA \cdot HD.\)

c) \(H\) là giao điểm của hai đường cao \(AD,\,\,BE\) của tam giác \(ABC\) nên \(H\) là trực tâm của tam giác, nên \(CH \bot AB,\) hay \(\widehat {AFC} = 90^\circ .\)

Xét \(\Delta AFH\)\(\Delta ADB\) có:

\(\widehat {AFH} = \widehat {ADB} = 90^\circ \)\(\widehat {DAB}\) là góc chung

Do đó (g.g).

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng) nên \(AF \cdot AB = AD \cdot AH.\)

d) Ta có \(\frac{{{S_{\Delta BHC}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}HD \cdot BC}}{{\frac{1}{2}AD \cdot BC}} = \frac{{HD}}{{AD}}.\)

Tương tự: \(\frac{{{S_{\Delta AHC}}}}{{{S_{\Delta ABC}}}} = \frac{{HE}}{{BE}};\) \(\frac{{{S_{\Delta AHB}}}}{{{S_{\Delta ABC}}}} = \frac{{HF}}{{CF}}.\)

Khi đó \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}}\)\[ = \frac{{{S_{\Delta AHB}} + {S_{\Delta BHC}} + {S_{\Delta CHA}}}}{{{S_{\Delta ABC}}}} = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABC}}}} = 1.\]