Câu hỏi:

04/12/2025 24 Lưu

Có hai loại dung dịch muối I và II. Người ta hòa 200 gam dung dịch muối I với 300 gam dung dịch muối II thì được một dung dịch có nồng độ muối là 33%. Tính nồng độ muối trong dung dịch I và II, biết rằng nồng độ muối trong dung dịch I lớn hơn nồng độ muối trong dung dịch II là 20%.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi nồng độ muối trong dung dịch I là \[x\,\,\left( \% \right)\] \(\left( {x > 0} \right).\)

Khi đó khối lượng muối có trong dung dịch I là: \(200 \cdot \frac{x}{{100}} = 2x\) (g).

Do nồng độ muối trong dung dịch I lớn hơn nồng độ muối trong dung dịch II là 20% nên nồng độ muối trong dung dịch II là \(x - 20\,\,\left( \% \right).\)

Khi đó khối lượng muối có trong dung dịch II là: \(300 \cdot \frac{{x - 20}}{{100}} = 3\left( {x - 20} \right)\) (g).

Khối lượng muối trong dung dịch sau khi trộn hai dung dịch là: \(2x + 3\left( {x - 20} \right)\) (g).

Khối lượng dung dịch muối sau khi trộn hai dung dịch là: \(200 + 300 = 500\) (g).

Do sau khi trộn hai dung dịch I và II thì được một dung dịch có nồng độ muối là 33% nên ta có phương trình: \(\frac{{2x + 3\left( {x - 20} \right)}}{{500}} \cdot 100\% = 33\% \)

\(2x + 3x - 60 = 33 \cdot 5\)

\(5x = 225\)

\(x = 45\) (thỏa mãn).

Vậy nồng độ muối của dung dịch I và II lần lượt là \(45\% \)\(25\% .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ADC\)\(\Delta BEC\) có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ \)\(\widehat {ACB}\) là góc chung.

Do đó ΔADCΔBEC (g.g).

b) Xét \(\Delta HEA\)\(\Delta HDB\) có:

\(\widehat {HEA} = \widehat {HDB} = 90^\circ \)\(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh)

Do đó ΔHEAΔHDB (g.g).

Khi đó \(\frac{{ (ảnh 1)

Suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\) (tỉ số cạnh tương ứng) nên \(HE \cdot HB = HA \cdot HD.\)

c) \(H\) là giao điểm của hai đường cao \(AD,\,\,BE\) của tam giác \(ABC\) nên \(H\) là trực tâm của tam giác, nên \(CH \bot AB,\) hay \(\widehat {AFC} = 90^\circ .\)

Xét \(\Delta AFH\)\(\Delta ADB\) có:

\(\widehat {AFH} = \widehat {ADB} = 90^\circ \)\(\widehat {DAB}\) là góc chung

Do đó (g.g).

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng) nên \(AF \cdot AB = AD \cdot AH.\)

d) Ta có \(\frac{{{S_{\Delta BHC}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}HD \cdot BC}}{{\frac{1}{2}AD \cdot BC}} = \frac{{HD}}{{AD}}.\)

Tương tự: \(\frac{{{S_{\Delta AHC}}}}{{{S_{\Delta ABC}}}} = \frac{{HE}}{{BE}};\) \(\frac{{{S_{\Delta AHB}}}}{{{S_{\Delta ABC}}}} = \frac{{HF}}{{CF}}.\)

Khi đó \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}}\)\[ = \frac{{{S_{\Delta AHB}} + {S_{\Delta BHC}} + {S_{\Delta CHA}}}}{{{S_{\Delta ABC}}}} = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABC}}}} = 1.\]

Lời giải

Cho hình thang \(MNPQ\) \(\ (ảnh 1)

a) Mặt khác: \(MN\,{\rm{//}}\,QP\) (do \(MNPQ\) là hình thang) nên \(\widehat {MNQ} = \widehat {NQP}\) (so le trong)

Xét \(\Delta MNQ\)\(\Delta NQP\) có:

\(\widehat {QMN} = \widehat {QNP}\)\(\widehat {MNQ} = \widehat {NQP}\)

Do đó ΔMNQΔNQP  (g.g).

b) Ta có: ΔMNQΔNQP (câu a) nên \(\frac{{MN}}{{NQ}} = \frac{{NQ}}{{QP}}\) (tỉ số cạnh tương ứng)

Suy ra \(N{Q^2} = MN \cdot PQ = 9 \cdot 16 = 144,\) do đó \(NQ = \sqrt {144} = 12{\rm{\;cm}}.\)

Ta có: \(MN\,{\rm{//}}\,QP,\) theo hệ quả định lí Thalès ta có: \(\frac{{MN}}{{PQ}} = \frac{{NO}}{{QO}}.\)

Theo tính chất tỉ lệ thức ta có: \(\frac{{MN}}{{PQ + MN}} = \frac{{NO}}{{QO + NO}}\) hay \(\frac{{MN}}{{PQ + MN}} = \frac{{NO}}{{QO + NO}}\)

Suy ra \(\frac{9}{{16 + 9}} = \frac{{NO}}{{NQ}},\) do đó \(NO = \frac{{9 \cdot NQ}}{{25}} = \frac{{9 \cdot 12}}{{25}} = 4,32\) cm.

Từ đó suy ra: \(OQ = NQ - NO = 12 - 4,32 = 7,68\) cm.

c) Ta có: \(NA\) là đường phân giác của \(\Delta MNQ\) nên \[\frac{{NM}}{{NQ}} = \frac{{AM}}{{AQ}}\] (tính chất).

Tương tự, \(QB\) là đường phân giác của \(\Delta NPQ\) nên \(\frac{{QN}}{{QP}} = \frac{{BN}}{{BP}}\) (tính chất).

Mặt khác, \(\frac{{MN}}{{NQ}} = \frac{{NQ}}{{QP}}\) (chứng minh ở câu b).

Do đó \(\frac{{AM}}{{AQ}} = \frac{{BN}}{{BP}},\) nên \(AM \cdot BP = AQ \cdot BN.\)

d) Cách 1. Qua \(A\) kẻ đường thẳng song song với \(QP,\) cắt \(MP\) tại \(I.\)

Cho hình thang \(MNPQ\) \(\ (ảnh 2)

Theo định lí Thalès ta có: \(\frac{{AM}}{{AQ}} = \frac{{MI}}{{IP}}.\)

Lại có \(\frac{{AM}}{{AQ}} = \frac{{BN}}{{BP}}\) (chứng minh câu c) nên \(\frac{{BN}}{{BP}} = \frac{{MI}}{{IP}},\) theo định lí Thalès đảo ta suy ra \(IB\,{\rm{//}}\,MN.\)

Qua \(I\)\(AI\,{\rm{//}}\,MN\) (do cùng song song \(QP),\) \(BI\,{\rm{//}}\,MN\) nên theo tiên đề Euclid thì \(A,\,\,I,\,\,B\) thẳng hàng hay \(AB\,{\rm{//}}\,MN.\)

Cách 2. Xét tứ giác \(ANBQ\) có:

\(\widehat {ANQ} = \widehat {ANM} = \frac{1}{2}\widehat {MNQ}\) (do \(AN\) là tia phân giác của \(\widehat {MNQ});\)

\(\widehat {BQN} = \frac{1}{2}\widehat {NQP}\) (do \(QB\) là tia phân giác của \(\widehat {NQP})\)

\(\widehat {MNQ} = \widehat {NQP}\) (chứng minh ở câu a) nên \(\widehat {ANQ} = \widehat {BQN}.\)

Lại có \(\widehat {ANQ}\)\(\widehat {BQN}\) nằm ở vị trí so le trong nên \(AN\,{\rm{//}}\,BQ\) \(\left( 1 \right)\)

Mặt khác: \(\widehat {QAN} = \widehat {AMN} + \widehat {MNA}\) (góc ngoài của \(\Delta AMN)\)\(\widehat {ANB} = \widehat {ANQ} + \widehat {QNB}.\)

\(\widehat {AMN} = \widehat {QNP}\)\(\widehat {MNA} = \widehat {ANQ}\)

Do đó \(\widehat {QAN} = \widehat {ANB}\)    \(\left( 2 \right)\)

Từ \(\left( 1 \right)\)\(\left( 2 \right),\) suy ra tứ giác \(ANBQ\) là hình thang cân.

Do đó \(\widehat {AQB} = \widehat {NBQ}\) (tính chất hình thang cân).   \(\left( 3 \right)\)

Xét \(\Delta ABQ\)\(\Delta NQB\) có:

\(AQ = BN;\) \(AB = NQ\) (do \(ANBQ\) là hình thang cân) và \(BQ\) cạnh chung

Do đó \(\Delta ABQ = \Delta NQB\) (c.c.c)

Suy ra \(\widehat {ABQ} = \widehat {NQB}\)  \(\left( 4 \right)\)

Từ \(\left( 3 \right)\) \(\left( 4 \right),\) suy ra \(\widehat {AQB} - \widehat {NQB} = \widehat {NBQ} - \widehat {ABQ}\) hay \(\widehat {AQN} = \widehat {ABN}.\)

Lại có: \(\widehat {AQN} = \widehat {QPN}\) (do

Do đó \(\widehat {ABN} = \widehat {QPN},\) mà hai góc này nằm ở vị trí đồng vị nên \(AB\,{\rm{//}}\,MN.\)