Câu hỏi:

04/12/2025 6 Lưu

Vào thế kỉ thứ III trước công nguyên, vua xứ Syracuse giao cho Archimedes kiểm tra xem chiếc mũ bằng vàng của mình có pha thêm bạc hay không. Chiếc mũ có trọng lượng 5 Newton (theo đơn vị hiện nay), khi nhúng ngập trong nước thì trọng lượng giảm đi 0,3 Newton. Biết rằng khi cân trong nước, vàng giảm \[\frac{1}{{20}}\] trọng lượng, bạc giảm \[\frac{1}{{10}}\] trọng lượng. Hỏi chiếc mũ chứa bao nhiêu gam bạc (vật có khối lượng 100 gam thì trọng lượng bằng 1 Newton)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi trọng lượng bạc trong mũ \(x\) (Newton) \(\left( {0 < x < 5} \right).\)

Trọng lượng vàng trong mũ là \(5 - x\) (Newton).

Khi nhúng ngập trong nước, trọng lượng bạc giảm \(\frac{x}{{10}}\) (Newton), trọng lượng vàng giảm \(\frac{{5 - x}}{{20}}\) (Newton).

Mà trọng lượng của mũ giảm đi 0,3 Newton nên ta có phương trình:

\(\frac{x}{{10}} + \frac{{5 - x}}{{20}} = 0,3\)

\(\frac{{2x}}{{20}} + \frac{{5 - x}}{{20}} = \frac{{0,3 \cdot 20}}{{20}}\)

\(2x + 5 - x = 6\)

\(x = 1\) (thỏa mãn).

Do đó trọng lượng bạc trong mũ là 1 Newton.

Vậy chiếc mũ chứa 100 gam bạc.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ADC\)\(\Delta BEC\) có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ \)\(\widehat {ACB}\) là góc chung.

Do đó ΔADCΔBEC (g.g).

b) Xét \(\Delta HEA\)\(\Delta HDB\) có:

\(\widehat {HEA} = \widehat {HDB} = 90^\circ \)\(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh)

Do đó ΔHEAΔHDB (g.g).

Khi đó \(\frac{{ (ảnh 1)

Suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\) (tỉ số cạnh tương ứng) nên \(HE \cdot HB = HA \cdot HD.\)

c) \(H\) là giao điểm của hai đường cao \(AD,\,\,BE\) của tam giác \(ABC\) nên \(H\) là trực tâm của tam giác, nên \(CH \bot AB,\) hay \(\widehat {AFC} = 90^\circ .\)

Xét \(\Delta AFH\)\(\Delta ADB\) có:

\(\widehat {AFH} = \widehat {ADB} = 90^\circ \)\(\widehat {DAB}\) là góc chung

Do đó (g.g).

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng) nên \(AF \cdot AB = AD \cdot AH.\)

d) Ta có \(\frac{{{S_{\Delta BHC}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}HD \cdot BC}}{{\frac{1}{2}AD \cdot BC}} = \frac{{HD}}{{AD}}.\)

Tương tự: \(\frac{{{S_{\Delta AHC}}}}{{{S_{\Delta ABC}}}} = \frac{{HE}}{{BE}};\) \(\frac{{{S_{\Delta AHB}}}}{{{S_{\Delta ABC}}}} = \frac{{HF}}{{CF}}.\)

Khi đó \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}}\)\[ = \frac{{{S_{\Delta AHB}} + {S_{\Delta BHC}} + {S_{\Delta CHA}}}}{{{S_{\Delta ABC}}}} = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABC}}}} = 1.\]

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ABE\) và \(\Delta ADC\) có:

\(\widehat {BAE}\) là góc chung;

\[\frac{{AB}}{{AD}} = \frac{{AE}}{{AC}}\,\,\left( {\frac{8}{{10}} = \frac{{12}}{{15}} = \frac{4}{5}} \right).\]

Do đó ΔABEΔADC (c.g.c).

b) Vì ΔABEΔADC (câu a) nên \(\frac{{AB}}{{AD}} = \frac{{BE}}{{DC}}\)

Suy ra \(AB \cdot DC = AD \cdot BE.\)

Do đó \(DC = \frac{{AD \cdot BE}}{{AB}} = \frac{{10 \cdot 10}}{8} = 12,5{\rm{\;cm}}.\)

Cho góc \(xAy.\) Trên tia \(Ax\) l (ảnh 1)

c) Vì ΔABEΔADC (câu a) nên \(\widehat {AEB} = \widehat {ACD}\) (hai góc tương ứng).

Xét \(\Delta CBI\) và \(\Delta EDI\) có:

\(\widehat {BCI} = \widehat {DEI}\) (do \(\widehat {AEB} = \widehat {ACD})\)\(\widehat {BIC} = \widehat {DIE}\) (hai góc đối đỉnh)

Do đó ΔCBIΔEDI (g.g).

Suy ra \(\frac{{IC}}{{IE}} = \frac{{IB}}{{ID}}\) (tỉ số cạnh tương ứng) nên \[IB \cdot IE = ID \cdot IC.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP