Câu hỏi:

04/12/2025 58 Lưu

Tính tuổi của hai mẹ con hiện nay, biết rằng cách đây 4 năm thì tuổi mẹ gấp 5 lần tuổi con, sau đây 2 năm thì tuổi mẹ gấp 3 lần tuổi con.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi tuổi con hiện nay là \(x\,\,\left( {x \in \mathbb{N}} \right).\)

Cách đây 4 năm, tuổi con là \(x - 4.\) Khi đó tuổi mẹ gấp 5 lần tuổi con nên tuổi mẹ là: \(5\left( {x - 4} \right).\)

Sau đây 2 năm, tuổi con là \(x + 2.\) Khi đó tuổi mẹ gấp 3 lần tuổi con nên tuổi mẹ là:\(3\left( {x + 2} \right)\).

Khoảng cách giữa hai lần này là 6 năm nên ta có phương trình:

\(3\left( {x + 2} \right) - 5\left( {x - 4} \right) = 6\)

\(3x + 6 - 5x + 20 = 6\)

\( - 2x = - 20\)

    \(x = 10\) (thỏa mãn).

Khi đó tuổi con hiện nay là 10. Sau 2 năm thì tuổi con là \(12,\) tuổi mẹ là \(3 \cdot 12 = 36.\) Do đó tuổi mẹ hiện nay là \(36 - 2 = 34.\)

Vậy tuổi con hiện nay là 10, tuổi mẹ hiện nay là 34.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Do \(ABCD\) là hình bình hành nên \(AB\,{\rm{//}}\,CD\)\(AD\,{\rm{//}}\,BC.\)

Xét \(\Delta ADK\) \(AD\,{\rm{//}}\,CN\) (do \(AD\,{\rm{//}}\,BC)\) nên ΔADKΔCNK (g.g).

b) Xét \(\Delta KAM\) \(AM\,{\rm{//}}\,CD\) (do \(AB\,{\rm{//}}\,CD)\) nên  (g.g).

Suy ra \(\frac{{KM}}{{KD}} = \frac{{KA}}{{KC}}\) (tỉ số cạnh tương ứng).

Cho hình bình hành \(ABCD\;\lef (ảnh 1)

 ΔADKΔCNK (câu a) nên \(\frac{{KD}}{{KN}} = \frac{{AK}}{{CK}}\) (tỉ số cạnh tương ứng).

Suy ra \(\frac{{KD}}{{KN}} = \frac{{KM}}{{KD}}\) nên \(K{D^2} = KM \cdot KN.\)

c) Do ΔADKΔCNK nên \(\frac{{AK}}{{CK}} = \frac{{AD}}{{CN}}\) (tỉ số cạnh tương ứng).

Do ΔKAMΔKCD nên \(\frac{{AK}}{{CK}} = \frac{{AM}}{{CD}}\) (tỉ số cạnh tương ứng).

Suy ra \(\frac{{AD}}{{CN}} = \frac{{AM}}{{CD}}\) hay \(\frac{9}{{CN}} = \frac{6}{{10}},\) do đó \(CN = \frac{{9 \cdot 10}}{6} = 15\) (cm).

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ADC\)\(\Delta BEC\) có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ \)\(\widehat {ACB}\) là góc chung.

Do đó ΔADCΔBEC (g.g).

b) Xét \(\Delta HEA\)\(\Delta HDB\) có:

\(\widehat {HEA} = \widehat {HDB} = 90^\circ \)\(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh)

Do đó ΔHEAΔHDB (g.g).

Khi đó \(\frac{{ (ảnh 1)

Suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\) (tỉ số cạnh tương ứng) nên \(HE \cdot HB = HA \cdot HD.\)

c) \(H\) là giao điểm của hai đường cao \(AD,\,\,BE\) của tam giác \(ABC\) nên \(H\) là trực tâm của tam giác, nên \(CH \bot AB,\) hay \(\widehat {AFC} = 90^\circ .\)

Xét \(\Delta AFH\)\(\Delta ADB\) có:

\(\widehat {AFH} = \widehat {ADB} = 90^\circ \)\(\widehat {DAB}\) là góc chung

Do đó (g.g).

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng) nên \(AF \cdot AB = AD \cdot AH.\)

d) Ta có \(\frac{{{S_{\Delta BHC}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}HD \cdot BC}}{{\frac{1}{2}AD \cdot BC}} = \frac{{HD}}{{AD}}.\)

Tương tự: \(\frac{{{S_{\Delta AHC}}}}{{{S_{\Delta ABC}}}} = \frac{{HE}}{{BE}};\) \(\frac{{{S_{\Delta AHB}}}}{{{S_{\Delta ABC}}}} = \frac{{HF}}{{CF}}.\)

Khi đó \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}}\)\[ = \frac{{{S_{\Delta AHB}} + {S_{\Delta BHC}} + {S_{\Delta CHA}}}}{{{S_{\Delta ABC}}}} = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABC}}}} = 1.\]