Câu hỏi:

04/12/2025 10 Lưu

Cho hình bình hành \(ABCD\) có \(AC > BD.\) Gọi \(H,\,\,K\) lần lượt là hình chiếu vuông góc của \(C\) trên đường thẳng \(AB\) và \(AD.\) Vẽ tia \(Dx\) cắt \(AC,\,\,AB,\,\,BC\) lần lượt tại \(I,\,\,M,\,\,N.\) Gọi \(J\) là điểm đối xứng với \(D\) qua \(I.\) Chứng minh:

a) \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}.\)   

b) ΔCHKΔBCA.

c) \(AB \cdot AH + AD \cdot AK = A{C^2}.\)          

d) \(IM \cdot IN = I{D^2}.\)

e) \(\frac{{JM}}{{JN}} = \frac{{DM}}{{DN}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình bình hành \(ABCD\ (ảnh 1)

a) Ta có \(ABCD\) là hình bình hành nên \(\widehat {ABC} = \widehat {ADC}\) \(\left( 1 \right)\) (tính chất hình bình hành)

Mà \(\widehat {HBC} = 180^\circ - \widehat {ABC}\) \(\left( 2 \right)\) (hai góc kề bù)

      \(\widehat {KDC} = 180^\circ - \widehat {ADC}\) \(\left( 3 \right)\) (hai góc kề bù)

Từ \(\left( 1 \right)\), \(\left( 2 \right)\), \(\left( 3 \right)\) suy ra \(\widehat {HBC} = \widehat {KDC}.\)

Xét \(\Delta CHB\) và \(\Delta CKD\) có:

\(\widehat {BHC} = \widehat {DKC} = 90^\circ \)\(\widehat {HBC} = \widehat {KDC}\)

Do đó ΔCHKΔBCA (g.g).

Suy ra \(\frac{{CH}}{{CK}} = \frac{{CB}}{{CD}}\) (tỉ số cạnh tương ứng), hay \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}\) (tính chất tỉ lệ thức).

b) Ta có \(\widehat {ABC}\) là góc ngoài của \(\Delta BHC\) nên \(\widehat {ABC} = \widehat {BHC} + \widehat {BCH} = 90^\circ + \widehat {BCH}\)\(\left( 4 \right)\)

Vì \(ABCD\) là hình bình hành nên \(BC\,{\rm{//}}\,AD\) và \(AB = CD\) (tính chất hình bình hành)

Mà \(CK \bot AD\) nên \(CK \bot BC\) nên \(\widehat {BCK} = 90^\circ .\)

Do đó \(\widehat {KCH} = \widehat {BCK} + \widehat {BCH} = 90^\circ + \widehat {BCH}\) \(\left( 5 \right)\)

Từ \(\left( 4 \right)\) và \(\left( 5 \right)\) suy ra \(\widehat {ABC} = \widehat {KCH}.\)

Theo câu a, \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}\) mà \(AB = CD\) nên \(\frac{{CH}}{{CB}} = \frac{{CK}}{{BA}}.\)

Xét \(\Delta CHK\) và \(\Delta BCA\) có: \(\widehat {KCH} = \widehat {ABC}\)\(\frac{{CH}}{{CB}} = \frac{{CK}}{{BA}}\)

Do đó ΔCHKΔBCA (c.g.c).

c) Kẻ \(BE \bot AC\) tại \(E\) \(\left( {E \in AC} \right).\)

Xét \(\Delta AEB\) và \(\Delta AHC\) có: \(\widehat {AEB} = \widehat {AHC} = 90^\circ \)\(\widehat {HAC}\) là góc chung.

Do đó ΔAEBΔAHC (g.g).

Suy ra \(\frac{{AB}}{{AC}} = \frac{{AE}}{{AH}}\) (tỉ số cạnh tương ứng) nên \(AB \cdot AH = AC \cdot AE\)\(\left( 6 \right)\)

Xét \(\Delta BCE\) và \(\Delta CAK\) có:

\(\widehat {BEC} = \widehat {CKA} = 90^\circ \)\(\widehat {BCE} = \widehat {CAK}\) (hai góc so le trong, \(BC\,{\rm{//}}\,DA)\)

Do đó ΔBCEΔCAK (g.g).

Suy ra \(\frac{{BC}}{{CA}} = \frac{{CE}}{{AK}}\) (tỉ số cạnh tương ứng) nên \(BC \cdot AK = AC \cdot CE\)

\(BC = AD\) nên \(AD \cdot AK = AC \cdot CE\) \(\left( 7 \right)\)

Từ \(\left( 6 \right)\)\(\left( 7 \right)\) suy ra: \(AB \cdot AH + AD \cdot AK = AC \cdot AE + AC \cdot CE\)

Hay \(AB \cdot AH + AD \cdot AK = AC\left( {AE + CE} \right) = A{C^2}.\)

d) Do \(ABCD\) là hình bình hành nên \(AB\,{\rm{//}}\,CD;\;AD\,{\rm{//}}\,BC\) (tính chất hình bình hành)

Hay \(AM\,{\rm{//}}\,CD;\;AD\,{\rm{//}}\,NC.\)

Vì \(AD\,{\rm{//}}\,NC\) nên  do đó \(\frac{{IN}}{{ID}} = \frac{{IC}}{{IA}}\) (tỉ số cạnh tương ứng) \(\left( 8 \right)\)

Vì \(AM\,{\rm{//}}\,DC\) nên do đó \(\frac{{ID}}{{IM}} = \frac{{IC}}{{IA}}\) (tỉ số cạnh tương ứng) \(\left( 9 \right)\)

Từ \(\left( 8 \right)\) và \(\left( 9 \right)\) suy ra \(\frac{{IN}}{{ID}} = \frac{{ID}}{{IM}},\) nên \(IM \cdot IN = I{D^2}.\)

e) Theo câu d, ta có: \(IM \cdot IN = I{D^2},\)\(ID = IJ\) (vì \(J\) là điểm đối xứng với \(D\) qua \(I)\)

Do đó \(I{J^2} = IM \cdot IN\) nên \(\frac{{IJ}}{{IM}} = \frac{{IN}}{{IJ}}.\)

Theo tính chất tỉ lệ thức ta có: \(\frac{{IJ - IM}}{{IM}} = \frac{{IN - IJ}}{{IJ}}\) hay \(\frac{{MJ}}{{IM}} = \frac{{NJ}}{{IJ}}\)

Suy ra \(\frac{{MJ}}{{NJ}} = \frac{{IM}}{{IJ}} = \frac{{IM}}{{ID}}\) (do \(ID = IJ).\)

Lại có \(AM\,{\rm{//}}\,CD,\) theo hệ quả định lí Thalès ta có \(\frac{{IM}}{{ID}} = \frac{{AM}}{{CD}}.\)

 Suy ra \(\frac{{MJ}}{{NJ}} = \frac{{AM}}{{CD}},\)\(CD = AB\) nên \(\frac{{MJ}}{{NJ}} = \frac{{AM}}{{AB}}\) \(\left( {10} \right)\)

Mặt khác, có \(NB\,{\rm{//}}\,AD\) nên theo hệ quả định lí Thalès ta có \(\frac{{AM}}{{BM}} = \frac{{DM}}{{NM}}.\)

Theo tính chất tỉ lệ thức ta có: \(\frac{{AM}}{{MB + AM}} = \frac{{DM}}{{MN + DM}}\) hay \(\frac{{AM}}{{AB}} = \frac{{DM}}{{DN}}\) \(\left( {11} \right)\)

Từ \(\left( {10} \right)\)\(\left( {11} \right)\) suy ra \(\frac{{MJ}}{{NJ}} = \frac{{DM}}{{DN}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ADC\)\(\Delta BEC\) có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ \)\(\widehat {ACB}\) là góc chung.

Do đó ΔADCΔBEC (g.g).

b) Xét \(\Delta HEA\)\(\Delta HDB\) có:

\(\widehat {HEA} = \widehat {HDB} = 90^\circ \)\(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh)

Do đó ΔHEAΔHDB (g.g).

Khi đó \(\frac{{ (ảnh 1)

Suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\) (tỉ số cạnh tương ứng) nên \(HE \cdot HB = HA \cdot HD.\)

c) \(H\) là giao điểm của hai đường cao \(AD,\,\,BE\) của tam giác \(ABC\) nên \(H\) là trực tâm của tam giác, nên \(CH \bot AB,\) hay \(\widehat {AFC} = 90^\circ .\)

Xét \(\Delta AFH\)\(\Delta ADB\) có:

\(\widehat {AFH} = \widehat {ADB} = 90^\circ \)\(\widehat {DAB}\) là góc chung

Do đó (g.g).

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng) nên \(AF \cdot AB = AD \cdot AH.\)

d) Ta có \(\frac{{{S_{\Delta BHC}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}HD \cdot BC}}{{\frac{1}{2}AD \cdot BC}} = \frac{{HD}}{{AD}}.\)

Tương tự: \(\frac{{{S_{\Delta AHC}}}}{{{S_{\Delta ABC}}}} = \frac{{HE}}{{BE}};\) \(\frac{{{S_{\Delta AHB}}}}{{{S_{\Delta ABC}}}} = \frac{{HF}}{{CF}}.\)

Khi đó \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}}\)\[ = \frac{{{S_{\Delta AHB}} + {S_{\Delta BHC}} + {S_{\Delta CHA}}}}{{{S_{\Delta ABC}}}} = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABC}}}} = 1.\]

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ABE\) và \(\Delta ADC\) có:

\(\widehat {BAE}\) là góc chung;

\[\frac{{AB}}{{AD}} = \frac{{AE}}{{AC}}\,\,\left( {\frac{8}{{10}} = \frac{{12}}{{15}} = \frac{4}{5}} \right).\]

Do đó ΔABEΔADC (c.g.c).

b) Vì ΔABEΔADC (câu a) nên \(\frac{{AB}}{{AD}} = \frac{{BE}}{{DC}}\)

Suy ra \(AB \cdot DC = AD \cdot BE.\)

Do đó \(DC = \frac{{AD \cdot BE}}{{AB}} = \frac{{10 \cdot 10}}{8} = 12,5{\rm{\;cm}}.\)

Cho góc \(xAy.\) Trên tia \(Ax\) l (ảnh 1)

c) Vì ΔABEΔADC (câu a) nên \(\widehat {AEB} = \widehat {ACD}\) (hai góc tương ứng).

Xét \(\Delta CBI\) và \(\Delta EDI\) có:

\(\widehat {BCI} = \widehat {DEI}\) (do \(\widehat {AEB} = \widehat {ACD})\)\(\widehat {BIC} = \widehat {DIE}\) (hai góc đối đỉnh)

Do đó ΔCBIΔEDI (g.g).

Suy ra \(\frac{{IC}}{{IE}} = \frac{{IB}}{{ID}}\) (tỉ số cạnh tương ứng) nên \[IB \cdot IE = ID \cdot IC.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP