Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B\) và \(SA \bot \left( {ABC} \right)\). Chọn khẳng định sai trong các khẳng định sau:
Quảng cáo
Trả lời:

Vì \(\Delta ABC\) vuông tại \(B\) nên \(BC \bot AB\) (1).
Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) (2).
Từ (1) và (2), suy ra \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\). Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \[O\] là tâm của hình vuông \(ABCD\).
Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).
Gọi \(I\) là trung điểm của \(AB\).
Khi đó ta có \(OI \bot AB\) và \(OI = 3\).
Lại có \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AB\) mà \(OI \bot AB\) nên \(AB \bot \left( {SOI} \right) \Rightarrow AB \bot SI\).
Suy ra \(\left( {\left( {SAB} \right),\left( {ABCD} \right)} \right) = \left( {OI,SI} \right) = \widehat {SIO} = 45^\circ \).
Xét \(\Delta SOI\) vuông tại \(O\), \(\tan \widehat {SIO} = \frac{{SO}}{{OI}} \Rightarrow SO = OI = 3\).
Khi đó \({V_{S.ABCD}} = \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot 3 \cdot {6^2} = 36\).
Trả lời: 36.
Câu 2
Lời giải

a) Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB\) \( \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\)
\( \Rightarrow \Delta SBC\) là tam giác vuông tại \(B\).
b) Vì \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\) mà \(AH \bot SB\) nên \(AH \bot \left( {SBC} \right)\).
c) Vì \(AH \bot \left( {SBC} \right)\) nên \(AH \bot SC\) mà \(AK \bot SC\)\( \Rightarrow SC \bot \left( {AHK} \right) \Rightarrow SC \bot HK\) hay \(\left( {SC,HK} \right) = 90^\circ \).
d) Vì \(HK \bot SC\) và \(AK \bot SC\) nên \(SC \bot \left( {ADK} \right) \Rightarrow AD \bot SC\) (1).
Mà \(SA \bot \left( {ADC} \right) \Rightarrow SA \bot AD\) (2).
Từ (1) và (2), suy ra \(AD \bot \left( {SAC} \right) \Rightarrow AD \bot AC\) hay \(\left( {AC,AD} \right) = 90^\circ \).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.