Câu hỏi:

06/12/2025 9 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hình chóp \(S.ABC\)\(SA\) vuông góc với \(\left( {ABC} \right)\). Góc giữa \(SC\)\(\left( {ABC} \right)\) là góc giữa hai đường thẳng nào sau đây?

A. \(SC\)\(AB\).    
B. \(SC\)\(AC\).    
C. \(SC\)\(SA\).                              
D. \(SC\) \(SB\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì \(SA \bot \left( {ABC} \right)\) nên \(AC\) là hình chiếu của \(SC\) lên mặt phẳng \(\left( {ABC} \right)\). Do đó \(\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,AC} \right)\). Chọn B. (ảnh 1)

\(SA \bot \left( {ABC} \right)\) nên \(AC\) là hình chiếu của \(SC\) lên mặt phẳng \(\left( {ABC} \right)\).

Do đó \(\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,AC} \right)\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do đó \(d\left( {AM,B'C'} \ri (ảnh 1)

Do \(ABC.A'B'C'\) là lăng trụ đều nên \(\left\{ \begin{array}{l}AA' \bot \left( {A'B'C'} \right) \Rightarrow AA' \bot B'C'\\AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot AM\end{array} \right.\).

Do đó \(d\left( {AM,B'C'} \right) = AA' = 2a\). Chọn A.

Lời giải

Đáp án: a) Đúng;    b) Sai;   c) (ảnh 1)

Từ giả thiết suy ra \(ABC.A'B'C'\) là hình lăng trụ đứng.

Gọi \(M'\) là trung điểm của \(B'C'\).

Suy ra \(MM'//BB'\)\(BB' \bot \left( {A'B'C'} \right)\) nên \(MM' \bot \left( {A'B'C'} \right)\).

Do đó \(A'M'\) là hình chiếu của \(A'M\) lên mặt phẳng \(\left( {A'B'C'} \right)\).

Do đó \(\left( {A'M,\left( {A'B'C'} \right)} \right) = \left( {A'M,A'M'} \right) = \widehat {MA'M'}\).

Ta có \(\Delta A'B'C'\) đều cạnh \(a\) nên \(A'M' = \frac{{a\sqrt 3 }}{2}\), \(MM' = BB' = 2a\).

\(MM' \bot \left( {A'B'C'} \right)\) nên \(MM' \bot A'M'\).

Xét \(\Delta A'M'M\) vuông tại \(M'\) , có \(\tan \widehat {MA'M'} = \frac{{MM'}}{{A'M'}} = \frac{{2a}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{4}{{\sqrt 3 }} \approx 2,31\).

Trả lời: 2,31.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(SA \bot BC\).
Đúng
Sai
b) \(SD \bot \left( {ABCD} \right)\).
Đúng
Sai
c) Góc giữa đường thẳng \(SC\)\(\left( {ABCD} \right)\)\(\widehat {SCA}\).
Đúng
Sai
d) Khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\)\(a\sqrt 2 \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(45^\circ \).          
B. \(60^\circ \).           
C. \(30^\circ \).                                     
D. \(90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP