Cho hàm số \(f\left( x \right) = {e^{x - {x^2}}}\). Biết rằng \(f''\left( x \right) = 0\) có hai nghiệm \({x_1};{x_2}\). Tính \({x_1} \cdot {x_2}\).
Quảng cáo
Trả lời:
\(f'\left( x \right) = \left( {1 - 2x} \right){e^{x - {x^2}}}\); \(f''\left( x \right) = - 2{e^{x - {x^2}}} + {\left( {1 - 2x} \right)^2}{e^{x - {x^2}}} = \left[ {{{\left( {1 - 2x} \right)}^2} - 2} \right]{e^{x - {x^2}}}\).
Có \(f''\left( x \right) = 0\)\( \Leftrightarrow {\left( {1 - 2x} \right)^2} - 2 = 0\)\( \Leftrightarrow 4{x^2} - 4x - 1 = 0\).
Ta có \({x_1};{x_2}\) là nghiệm của phương trình \(4{x^2} - 4x - 1 = 0\) nên theo định lí Vi ét ta có \({x_1}{x_2} = - \frac{1}{4}\). Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Hàm số có đạo hàm trên \(\left( {0; + \infty } \right)\).
b) \(y' = f'\left( x \right) = \frac{1}{{2\sqrt x }}\). Khi đó \(f'\left( 9 \right) = \frac{1}{{2\sqrt 9 }} = \frac{1}{6}\).
c) \(y = f\left( {{x^2} + 1} \right) = \sqrt {{x^2} + 1} \).
Khi đó \(y' = \frac{{{{\left( {{x^2} + 1} \right)}^\prime }}}{{2\sqrt {{x^2} + 1} }} = \frac{x}{{\sqrt {{x^2} + 1} }}\).
d) Hệ số góc của tiếp tuyến là \(y'\left( 4 \right) = \frac{1}{{2\sqrt 4 }} = \frac{1}{4}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Lời giải
Ta có \(y' = - \frac{9}{{{x^2}}}\).
Hệ số góc của tiếp tuyến tại điểm \(M\) là \(y'\left( 3 \right) = - \frac{9}{{{3^2}}} = - 1\).
Phương trình tiếp tuyến \(\Delta \) với \(\left( C \right)\) tại điểm \(M\) là \(y = - \left( {x - 3} \right) + 3 = - x + 6\).
Đường thẳng \(\Delta \) cắt trục hoành và trục tung lần lượt tại hai điểm \(A\left( {6;0} \right),B\left( {0;6} \right)\) nên diện tích tam giác \(OAB\) vuông tại \(O\) bằng \({S_{\Delta OAB}} = \frac{1}{2}OA \cdot OB = \frac{1}{2} \cdot 6 \cdot 6 = 18\).
Trả lời: 18.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.