Câu hỏi:

05/12/2025 72 Lưu

Hộp thứ nhất đựng 5 thẻ được đánh số từ 1 đến 5. Hộp thứ hai đựng 6 thẻ được đánh số từ 1 đến 6. Lấy ra ngoài ngẫu nhiên mỗi hộp một thẻ. Gọi \(A\) là biến cố “Tổng các số ghi trên hai thẻ bằng 8”, \(B\) là biến cố “Tích các số ghi trên hai thẻ là số chẵn”. Tính \(P\left( {AB} \right)\).     

A. \(\frac{1}{{15}}\).         
B. \(\frac{2}{{15}}\).         
C. \(\frac{4}{{15}}\).                  
D. \(\frac{1}{{30}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là \(5 \cdot 6 = 30\).

Ta có \(AB\) là biến cố “Tổng các số ghi trên thẻ bằng 8 và tích các số ghi trên thẻ là số chẵn”.

Khi đó \(AB = \left\{ {\left( {2;6} \right);\left( {4;4} \right)} \right\}\)\( \Rightarrow n\left( {AB} \right) = 2\).

Do đó \(P\left( {AB} \right) = \frac{2}{{30}} = \frac{1}{{15}}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”; \(B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 5”.

Khi đó \(A \cup B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3 hoặc 5”.

Từ 1 đến 100 có 33 số chia hết cho 3 nên \(P\left( A \right) = \frac{{33}}{{100}} = 0,33\).

Từ 1 đến 100 có 20 số chia hết cho 5 nên \(P\left( A \right) = \frac{{20}}{{100}} = 0,2\).

Từ 1 đến 100 có 6 số chia hết cho 15 nên \(P\left( {AB} \right) = \frac{6}{{100}} = 0,06\).

Vậy \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,47\).

Trả lời: 0,47.

Câu 2

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).
Đúng
Sai
b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).
Đúng
Sai
c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).
Đúng
Sai
d) Xác suất để đúng 2 người bắn trúng đích là 0,483.
Đúng
Sai

Lời giải

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).

b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).

c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).

d) Gọi \(D\)là biến cố “Có đúng 2 người bắn trúng đích”.

Khi đó \(D = AB\overline C \cup A\overline B C \cup \overline A BC\).

Khi đó \(P\left( D \right) = P\left( {AB\overline C \cup A\overline B C \cup \overline A BC} \right)\)\( = P\left( A \right)P\left( B \right)P\left( {\overline C } \right) + P\left( A \right)P\left( {\overline B } \right)P\left( C \right) + P\left( {\overline A } \right)P\left( B \right)P\left( C \right)\)

\( = 0,5 \cdot 0,7 \cdot 0,2 + 0,5 \cdot 0,3 \cdot 0,8 + 0,5 \cdot 0,7 \cdot 0,8 = 0,47\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 5

A. Hai viên bi lấy ra có cùng màu và \(n\left( {A \cup B} \right) = 25\).     
B. Hai viên bi lấy ra có cùng đỏ và \(n\left( {A \cup B} \right) = 20\).    
C. Hai viên bi lấy ra có cùng màu và \(n\left( {A \cup B} \right) = 13\).     
D. Hai viên bi lấy ra có cùng màu xanh và \(n\left( {A \cup B} \right) = 10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP