Câu hỏi:

06/12/2025 26 Lưu

Cho hình chóp \(S.ABCD\) đáy là hình vuông cạnh bằng 3, tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, \(M\) là trung điểm của \(AB\), \(G\) là trọng tâm của tam giác \(SAB\). Tính khoảng cách từ điểm \(G\) đến mặt phẳng \(\left( {SCD} \right)\) (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABCD\) đáy là hình vuô (ảnh 1)

Gọi \(H\) là trung điểm của \(CD\). Suy ra \(MH \bot CD\) (1).

Hạ \(MK \bot SH\) (3).

\(\Delta SAB\) đều, \(M\) là trung điểm của \(AB\) nên \(SM \bot AB\).

\(\left. \begin{array}{l}\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SM \bot AB\\SM \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right) \Rightarrow SM \bot CD\)(2).

Từ (1) và (2), suy ra \(CD \bot \left( {SMH} \right)\)\( \Rightarrow CD \bot MK\) (4).

Từ (3) và (4), suy ra \(MK \bot \left( {SCD} \right)\).

Khi đó \(d\left( {M,\left( {SCD} \right)} \right) = MK\).

Ta có \(SM = \frac{{3\sqrt 3 }}{2},MH = 3\).

Xét \(\Delta SMK\) vuông tại \(M\), ta có \(\frac{1}{{M{K^2}}} = \frac{1}{{S{M^2}}} + \frac{1}{{M{H^2}}} = \frac{4}{{27}} + \frac{1}{9} = \frac{7}{{27}} \Rightarrow MK = \frac{{3\sqrt {21} }}{7}\).

\(\frac{{d\left( {G,\left( {SCD} \right)} \right)}}{{d\left( {M,\left( {SCD} \right)} \right)}} = \frac{{GS}}{{MS}} = \frac{2}{3}\)\( \Rightarrow d\left( {G,\left( {SCD} \right)} \right) = \frac{2}{3}d\left( {M,\left( {SCD} \right)} \right) = \frac{2}{3} \cdot \frac{{3\sqrt {21} }}{7} \approx 1,31\).

Trả lời: 1,31.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(AM\) là đoạn vuông góc chung của hai đường thẳng chéo nhau \(AA'\)\(BC\).
Đúng
Sai
b) Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {A'BC} \right)\)\(\frac{{a\sqrt {15} }}{5}\).
Đúng
Sai
c) Khoảng cách giữa hai mặt phẳng \(\left( {ABC} \right)\)\(\left( {A'B'C'} \right)\) bằng \(a\sqrt 2 \).
Đúng
Sai
d) Khoảng cách giữa hai đường thẳng \(AA'\)\(BC\)\(\frac{{a\sqrt 5 }}{2}\).
Đúng
Sai

Lời giải

Đáp án: a) Đúng;    b) Đúng;  (ảnh 1)

a) Vì \(AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot AM\).

\(\Delta ABC\) đều, \(M\) là trung điểm của \(BC\) nên \(AM \bot BC\).

Suy ra \(AM\) là đoạn vuông góc chung của hai đường thẳng chéo nhau \(AA'\)\(BC\).

b) Hạ \(AH \bot A'M\) (1).

\(AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot BC\)\(AM \bot BC\) nên \(AM\)\(BC \bot \left( {AMA'} \right) \Rightarrow BC \bot AH\) (2).

Từ (1) và (2), suy ra \(AH \bot \left( {A'BC} \right)\).

Khi đó \(d\left( {A,\left( {A'BC} \right)} \right) = AH\).

\(\Delta ABC\) đều cạnh \(a\) nên \(AM = \frac{{a\sqrt 3 }}{2}\).

Xét \(\Delta AMA'\) vuông tại \(A,\)\(\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{3{a^2}}} + \frac{4}{{3{a^2}}} = \frac{5}{{3{a^2}}}\)\( \Rightarrow AH = \frac{{a\sqrt {15} }}{5}\).

c) \(d\left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = AA' = a\sqrt 3 \).

d) \(d\left( {AA',BC} \right) = AM = \frac{{a\sqrt 3 }}{2}\).

Đáp án: a) Đúng;    b) Đúng;    c) Sai;     d) Sai.

Câu 2

a) \(BC \bot SA\).
Đúng
Sai
b) \(BD \bot \left( {SAB} \right)\).
Đúng
Sai
c) Thể tích của khối chóp \(S.ABCD\) bằng \(\frac{{\sqrt 3 {a^3}}}{3}\).
Đúng
Sai
d) Thể tích của khối chóp \(S.ABC\) bằng \(\frac{{\sqrt 3 }}{4}{a^3}\).
Đúng
Sai

Lời giải

Đáp án: a) Đúng;    b) Sai (ảnh 1)

a) Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot BC\).

b) Có \(DA \bot AB\)\(SA \bot AD\) nên \(AD \bot \left( {SAB} \right)\).

Suy ra \(\left( {BD,\left( {SAB} \right)} \right) = \left( {BD,BA} \right) = \widehat {ABD} = 45^\circ \).

Do đó \(BD\) không vuông góc với mặt phẳng \(\left( {SAB} \right)\).

c) \({V_{S.ABCD}} = \frac{1}{3} \cdot SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot a\sqrt 3 \cdot {a^2} = \frac{{{a^3}\sqrt 3 }}{3}\).

d) \({V_{S.ABC}} = \frac{1}{2}{V_{S.ABCD}} = \frac{{{a^3}\sqrt 3 }}{6}\).

Đáp án: a) Đúng;    b) Sai;    c) Đúng;     d) Sai.

Câu 4

A. \(V = 1\).                       
B. \(V = \frac{1}{3}\).       
C. \(V = \frac{{\sqrt 3 }}{2}\).             
D. \(V = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Góc giữa \(AC'\)\(\left( {ABB'A'} \right)\)\(\widehat {B'AC'}\).
Đúng
Sai
b) Thể tích lăng trụ đã cho bằng \(\frac{{\sqrt 3 {a^3}}}{3}\).
Đúng
Sai
c) Hai mặt phẳng \(\left( {BCC'B'} \right)\)\(\left( {ABC} \right)\) vuông góc nhau.
Đúng
Sai
d) Khoảng cách giữa \(AA'\)\(BC'\) bằng \(\frac{{a\sqrt 3 }}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP