Câu hỏi:

08/12/2025 47 Lưu

Cho điểm \(A\)\(B\) trong mặt phẳng tọa độ \(Oxy\) như hình bên. Khẳng định nào sau đây là đúng?       
Hướng dẫn giải  Đáp án đúng là: B (ảnh 1)

A. \(N\left( { - 3;2} \right).\)                   
B. \(N\left( {2; - 3} \right).\)       
C. \(M\left( {1; - 2} \right).\)                   
D. \(M\left( { - 1;2} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Trong hình vẽ trên,

điểm \(M\) có hoành độ là \[ - 2\] và tung độ là \(1\) nên có tọa độ là \(M\left( { - 2;1} \right).\)

điểm \(N\) có hoành độ là \[2\] và tung độ là \( - 3\) nên có tọa độ là \(N\left( {2; - 3} \right).\)

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1)

1) Cho hình chóp \(S.ABC (ảnh 1)

Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông và các mặt bên là những tam giác đều nên là hình chóp đều.

a) Do \(ABCD\) là hình vuông cạnh \(a\) nên \(\Delta ADC\) vuông tại \(D\) có \(AD = DC = a,\) áp dụng định lí Pythagore ta có: \(A{C^2} = A{D^2} + D{C^2}\)

Suy ra \(A{C^2} = A{D^2} + D{C^2} = {a^2} + {a^2} = 2{a^2}.\) Do đó \(AC = a\sqrt 2 .\)

Vì \(SO\) là đường cao của hình chóp đều \(S.ABCD\) với \(ABCD\) là hình vuông nên \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\).

Do đó \(O\) là trung điểm của \(AC\) nên \(OA = \frac{1}{2}AC = \frac{1}{2} \cdot a\sqrt 2  = \frac{{a\sqrt 2 }}{2}.\)

Các mặt bên của hình chóp là các tam giác đều nên \(SA = AD = a.\)

Xét \(\Delta SAO\) vuông tại \(O,\) áp dụng định lí Pythagore ta có: \(S{A^2} = S{O^2} + A{O^2}\)

Suy ra \(S{O^2} = S{A^2} - A{O^2} = {a^2} - {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = \frac{1}{2}{a^2}.\)

Do đó \(SO = \frac{a}{{\sqrt 2 }}.\)

Vậy độ dài đường cao \(SO\) của hình chóp đều \(S.ABCD\) là \(\frac{a}{{\sqrt 2 }}.\)

b) Gọi \(M\) là trung điểm của \(CD.\) Tam giác \(SCD\) đều nên đường trung tuyến \(SM\) đồng thời là đường cao nên \(SM \bot CD\), do đó \(\Delta SCM\) vuông tại \(M.\)

Áp dụng định lí Pythagore ta có \(S{C^2} = S{M^2} + C{M^2}\)

Suy ra \(S{M^2} = S{C^2} - C{M^2} = {a^2} - {\left( {\frac{1}{2}a} \right)^2} = \frac{3}{4}{a^2}.\)

Do đó \(SM = \frac{{a\sqrt 3 }}{2}.\)

Diện tích xung quanh của hình chóp đều \(S.ABCD\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {4a} \right) \cdot \frac{{a\sqrt 3 }}{2} = {a^2}\sqrt 3 \) (đvdt).

Thể tích của hình chóp đều \(S.ABCD\) là:

\(V = \frac{1}{3} \cdot {a^2} \cdot \frac{a}{{\sqrt 2 }} = \frac{{{a^3}}}{{3\sqrt 2 }}\) (đvtt).

Vậy diện tích xung quanh và thể tích của hình chóp lần lượt là \({a^2}\sqrt 3 \) (đvdt) và \(\frac{{{a^3}}}{{3\sqrt 2 }}\) (đvtt).

2)

1) Cho hình chóp \(S.ABC (ảnh 2)

a) Tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G\] nên \[G\] là trọng tâm \[\Delta ABC,\] do đó \(DG = \frac{1}{2}BG,\) \(EG = \frac{1}{2}CG.\)

Mà \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG\] nên \(BF = FG = \frac{1}{2}BG,\) \(CH = HG = \frac{1}{2}CG.\)

Do đó \[DG = BF = FG,{\rm{ }}EG = CH = HG.\]

Suy ra, \[G\] là trung điểm của \[FD,{\rm{ }}G\] là trung điểm của \[EH.\]

Tứ giác \[EFHD\] có hai đường chéo \[EH\] và \(FD\) cắt nhau tại trung điểm \[G\] của mỗi đường nên \[EFHD\] là hình bình hành.

b) ⦁ Để hình bình hành \[EFHD\] là hình vuông thì \[EH = DF\] và \[EH \bot DF.\]

Suy ra \[EG = DG,{\rm{ }}BG = CG\] và \[BD \bot CE.\]

⦁ Xét \(\Delta BEG\) và \[\Delta CDG\] có:

\[BG = CG,\] \(\widehat {EGB} = \widehat {DGC}\) (đối đỉnh), \[EG = DG\]

Do đó \(\Delta BEG = \Delta CDG\) (c.g.c).

Suy ra \[BE = CD\] (hai cạnh tương ứng) (1)

Mà \[BD,{\rm{ }}CE\] là các đường trung tuyến của \(\Delta ABC\) nên \[E\] là trung điểm của \[AB,{\rm{ }}D\] là trung điểm của \[AC\]

Suy ra \[AB = 2BE,{\rm{ }}AC = 2CD\,\,\,\,\,\,\left( 2 \right)\]

Từ (1) và (2) suy ra \[AB = AC.\]

⦁ Dễ thấy, nếu \[AB = AC\] và \[BD \bot CE\] thì tứ giác \[EFHD\] là hình vuông.

Vậy tam giác \[ABC\] cân tại \[A\] có hai đường trung tuyến \[BD,CE\] vuông góc với nhau thì tứ giác \[EFHD\] là hình vuông.

Lời giải

Hướng dẫn giải

a) Ta có \(1 - {x^3} = \left( {1 - x} \right)\left( {1 + x + {x^2}} \right)\)

\[\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}} = \frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}.\]

Khi đó biểu thức \(P\) xác định khi và chỉ khi \(\left\{ \begin{array}{l}x - 1 \ne 0\\1 - {x^3} \ne 0\\x + 1 \ne 0\\\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}} \ne 0\end{array} \right.\)nên \(\left\{ \begin{array}{l}x \ne 1\\1 - x \ne 0\\1 + x + {x^2} \ne 0\\x \ne  - 1\\2x\, + \,\,1 \ne 0\\{\left( {x + 1} \right)^2} \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x \ne 1\\x \ne  - 1\\x \ne  - \frac{1}{2}.\end{array} \right.\)

Vậy với \(x \ne 1\,;\,\,x \ne  - 1\) và \(x \ne  - \frac{1}{2}\) thì biểu thức \(P\) xác định.

b) Với \(x \ne 1\,;\,\,x \ne  - 1\) và \(x \ne  - \frac{1}{2},\) ta có:

\[P = \,\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - \,{x^3}}}.\frac{{{x^2} + \,x\, + \,1}}{{x\, + 1}}} \right)\,:\,\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)}}.\frac{{{x^2} + \,x\, + \,1}}{{x\, + 1}}} \right]\,:\,\frac{{2x\, + \,\,1}}{{{{\left( {x\, + 1} \right)}^2}}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {x\, + 1} \right)}}} \right] \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} + \frac{x}{{\left( {x - 1} \right)\left( {x\, + 1} \right)}}} \right] \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\frac{{\left( {x\, + 1} \right) + x}}{{\left( {x - 1} \right)\left( {x\, + 1} \right)}} \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\frac{{\left( {2x + 1} \right) \cdot {{\left( {x\, + 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x\, + 1} \right) \cdot \left( {2x\, + \,\,1} \right)}}\]\[ = \,\frac{{x\, + 1}}{{x - 1}}.\]

Vậy với \(x \ne 1;x \ne  - 1\) và \(x \ne  - \frac{1}{2}\) thì \(P = \,\frac{{x\, + 1}}{{x - 1}}.\)

c) Thay \[x = \,\frac{1}{2}\] (thỏa mãn điều kiện) vào biểu thức \(P = \,\frac{{x\, + 1}}{{x - 1}},\) ta được: \(P = \,\frac{{\frac{1}{2}\, + 1}}{{\frac{1}{2} - 1}} = \frac{{\frac{3}{2}}}{{\frac{1}{2}}} = 3.\)

Vậy \(P = 3\) khi \[x = \,\frac{1}{2}.\]

Câu 3

A. \(\left( {{x^2} + x} \right){y^2}.\)     
B. \(2{x^3}{y^2}.\)              
C. \(x\left( {x + 1} \right)y.\)                        
D. \(2x{y^2}{\left( {y - 1} \right)^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( {{d_m}} \right)\] cắt trục tung tại điểm 2.
B. \[\left( {{d_m}} \right)\] có hệ số góc âm.
C. \[\left( {{d_m}} \right)\] cắt trục hoành tại điểm 1.         
D. \[\left( {{d_m}} \right)\] tạo với trục hoành một góc nhọn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP