Cho điểm \(A\) và \(B\) trong mặt phẳng tọa độ \(Oxy\) như hình bên. Khẳng định nào sau đây là đúng?

Câu hỏi trong đề: Bộ 10 đề thi cuối kì Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Trong hình vẽ trên,⦁ điểm \(M\) có hoành độ là \[ - 2\] và tung độ là \(1\) nên có tọa độ là \(M\left( { - 2;1} \right).\)
⦁ điểm \(N\) có hoành độ là \[2\] và tung độ là \( - 3\) nên có tọa độ là \(N\left( {2; - 3} \right).\)
Vậy ta chọn phương án B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) \(4{x^2} - 6x\) \( = 2x\left( {2x - 3} \right).\) |
b) \(25{\left( {x - y} \right)^2} - 16{\left( {x + y} \right)^2}\) \( = {\left[ {5\left( {x - y} \right)} \right]^2} - {\left[ {4\left( {x + y} \right)} \right]^2}\) \[ = {\left( {5x - 5y} \right)^2} - {\left( {4x + 4y} \right)^2}\] \[ = \left[ {5x - 5y - \left( {4x + 4y} \right)} \right]\left[ {5x - 5y + \left( {4x + 4y} \right)} \right]\] \[ = \left( {5x - 5y - 4x - 4y} \right)\left( {5x - 5y + 4x + 4y} \right)\] \[ = \left( {x - 9y} \right)\left( {9x - y} \right).\] |
Lời giải
Hướng dẫn giải
a) Ta có \(1 - {x^3} = \left( {1 - x} \right)\left( {1 + x + {x^2}} \right)\)
\[\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}} = \frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}.\]
Khi đó biểu thức \(P\) xác định khi và chỉ khi \(\left\{ \begin{array}{l}x - 1 \ne 0\\1 - {x^3} \ne 0\\x + 1 \ne 0\\\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}} \ne 0\end{array} \right.\)nên \(\left\{ \begin{array}{l}x \ne 1\\1 - x \ne 0\\1 + x + {x^2} \ne 0\\x \ne - 1\\2x\, + \,\,1 \ne 0\\{\left( {x + 1} \right)^2} \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne - \frac{1}{2}.\end{array} \right.\)
Vậy với \(x \ne 1\,;\,\,x \ne - 1\) và \(x \ne - \frac{1}{2}\) thì biểu thức \(P\) xác định.
b) Với \(x \ne 1\,;\,\,x \ne - 1\) và \(x \ne - \frac{1}{2},\) ta có:
\[P = \,\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - \,{x^3}}}.\frac{{{x^2} + \,x\, + \,1}}{{x\, + 1}}} \right)\,:\,\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}}\]
\[ = \,\left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)}}.\frac{{{x^2} + \,x\, + \,1}}{{x\, + 1}}} \right]\,:\,\frac{{2x\, + \,\,1}}{{{{\left( {x\, + 1} \right)}^2}}}\]
\[ = \,\left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {x\, + 1} \right)}}} \right] \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]
\[ = \,\left[ {\frac{1}{{x - 1}} + \frac{x}{{\left( {x - 1} \right)\left( {x\, + 1} \right)}}} \right] \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]
\[ = \,\frac{{\left( {x\, + 1} \right) + x}}{{\left( {x - 1} \right)\left( {x\, + 1} \right)}} \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]
\[ = \,\frac{{\left( {2x + 1} \right) \cdot {{\left( {x\, + 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x\, + 1} \right) \cdot \left( {2x\, + \,\,1} \right)}}\]\[ = \,\frac{{x\, + 1}}{{x - 1}}.\]
Vậy với \(x \ne 1;x \ne - 1\) và \(x \ne - \frac{1}{2}\) thì \(P = \,\frac{{x\, + 1}}{{x - 1}}.\)
c) Thay \[x = \,\frac{1}{2}\] (thỏa mãn điều kiện) vào biểu thức \(P = \,\frac{{x\, + 1}}{{x - 1}},\) ta được: \(P = \,\frac{{\frac{1}{2}\, + 1}}{{\frac{1}{2} - 1}} = \frac{{\frac{3}{2}}}{{\frac{1}{2}}} = 3.\)
Vậy \(P = 3\) khi \[x = \,\frac{1}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Đa thức nào sau đây không là mẫu thức chung của hai phân thức \(\frac{1}{x};\,\,\frac{1}{{{y^2}}}?\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.