Câu hỏi:

08/12/2025 15 Lưu

(1,0 điểm) Một thiết bị tiệt khuẩn y tế bằng năng lượng mặt trời được mua với giá 60 triệu đồng, mỗi năm thiết bị tiệt khuẩn đó đều khấu hao \(k\) (triệu đồng) với \(0 < k < 60.\) Gọi \(y\) (triệu đồng) là giá của thiết bị tiệt khuẩn đó sau \(x\) năm sử dụng.

Hướng dẫn giải  a) Ta có \(1 - {x^3} = (ảnh 1)

a) Chứng tỏ rằng \[y\] là hàm số bậc nhất của \[x,\] tức là \[y = ax + b{\rm{ }}\left( {a \ne 0} \right).\]

b) Trong hình vẽ bên, tia \[At\] là một phần của đường thẳng \[y = ax + b.\] Tìm \[a,{\rm{ }}b.\] Từ đó, cho biết sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng bao nhiêu phần trăm so với giá mua ban đầu.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
a) Sau \[x\] năm sử dụng, thiết bị tiệt khuẩn đó bị khấu hhao là \[kx\] (triệu đồng).

Giá của thiết bị tiệt khuẩn đó sau \[x\] năm sử dụng là: \[y = 60 - kx\] hay \[y =  - kx + 60.\]

Mà \[0 < k < 60\] hay \[k \ne 0,\] suy ra \[y\] là hàm số bậc nhất của \[x.\]

b) Từ câu a, ta có \[b = 60.\]

Do đường thẳng \[y = ax + b\] đi qua điểm \[B\left( {10;{\rm{ }}30} \right)\] nên ta có:

\[30 = a \cdot 10 + 60.\]

Hay \[10a = --30\]

Suy ra \[a =  - 3.\]

Khi đó, đường thẳng cần tìm là: \[y =  - 3x + 60.\]

Giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng là:

\[ - 3 \cdot 12 + 60 = --36 + 60 = 24\] (triệu đồng).

Tỉ số phần trăm giữa giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng và giá mua ban đầu là: \(\frac{{24}}{{60}} \cdot 100{\rm{\% }} = 40{\rm{\% }}{\rm{.}}\)

Vậy sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng \[40\% \] so với giá mua ban đầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có \(1 - {x^3} = \left( {1 - x} \right)\left( {1 + x + {x^2}} \right)\)

\[\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}} = \frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}.\]

Khi đó biểu thức \(P\) xác định khi và chỉ khi \(\left\{ \begin{array}{l}x - 1 \ne 0\\1 - {x^3} \ne 0\\x + 1 \ne 0\\\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}} \ne 0\end{array} \right.\)nên \(\left\{ \begin{array}{l}x \ne 1\\1 - x \ne 0\\1 + x + {x^2} \ne 0\\x \ne  - 1\\2x\, + \,\,1 \ne 0\\{\left( {x + 1} \right)^2} \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x \ne 1\\x \ne  - 1\\x \ne  - \frac{1}{2}.\end{array} \right.\)

Vậy với \(x \ne 1\,;\,\,x \ne  - 1\) và \(x \ne  - \frac{1}{2}\) thì biểu thức \(P\) xác định.

b) Với \(x \ne 1\,;\,\,x \ne  - 1\) và \(x \ne  - \frac{1}{2},\) ta có:

\[P = \,\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - \,{x^3}}}.\frac{{{x^2} + \,x\, + \,1}}{{x\, + 1}}} \right)\,:\,\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)}}.\frac{{{x^2} + \,x\, + \,1}}{{x\, + 1}}} \right]\,:\,\frac{{2x\, + \,\,1}}{{{{\left( {x\, + 1} \right)}^2}}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {x\, + 1} \right)}}} \right] \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} + \frac{x}{{\left( {x - 1} \right)\left( {x\, + 1} \right)}}} \right] \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\frac{{\left( {x\, + 1} \right) + x}}{{\left( {x - 1} \right)\left( {x\, + 1} \right)}} \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\frac{{\left( {2x + 1} \right) \cdot {{\left( {x\, + 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x\, + 1} \right) \cdot \left( {2x\, + \,\,1} \right)}}\]\[ = \,\frac{{x\, + 1}}{{x - 1}}.\]

Vậy với \(x \ne 1;x \ne  - 1\) và \(x \ne  - \frac{1}{2}\) thì \(P = \,\frac{{x\, + 1}}{{x - 1}}.\)

c) Thay \[x = \,\frac{1}{2}\] (thỏa mãn điều kiện) vào biểu thức \(P = \,\frac{{x\, + 1}}{{x - 1}},\) ta được: \(P = \,\frac{{\frac{1}{2}\, + 1}}{{\frac{1}{2} - 1}} = \frac{{\frac{3}{2}}}{{\frac{1}{2}}} = 3.\)

Vậy \(P = 3\) khi \[x = \,\frac{1}{2}.\]

Lời giải

Hướng dẫn giải

a) \(4{x^2} - 6x\)

\( = 2x\left( {2x - 3} \right).\)

b) \(25{\left( {x - y} \right)^2} - 16{\left( {x + y} \right)^2}\)

\( = {\left[ {5\left( {x - y} \right)} \right]^2} - {\left[ {4\left( {x + y} \right)} \right]^2}\)

\[ = {\left( {5x - 5y} \right)^2} - {\left( {4x + 4y} \right)^2}\]

\[ = \left[ {5x - 5y - \left( {4x + 4y} \right)} \right]\left[ {5x - 5y + \left( {4x + 4y} \right)} \right]\]

\[ = \left( {5x - 5y - 4x - 4y} \right)\left( {5x - 5y + 4x + 4y} \right)\]

\[ = \left( {x - 9y} \right)\left( {9x - y} \right).\]

Câu 5

A. \(\left( {{x^2} + x} \right){y^2}.\)     
B. \(2{x^3}{y^2}.\)              
C. \(x\left( {x + 1} \right)y.\)                        
D. \(2x{y^2}{\left( {y - 1} \right)^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[60^\circ .\]       
B. \[80^\circ .\]       
C. \[90^\circ .\]                             
D. \[100^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({S_{xq}} = \frac{1}{2}pd.\)            
B. \({S_{xq}} = \frac{1}{3}pd.\)              
C. \({S_{xq}} = pd.\) 
D. \({S_{xq}} = 2pd.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP