Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right): - x + 3y + 2z - 1 = 0\). Mặt phẳng nào dưới đây song song với \(\left( \alpha \right)\).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(\overrightarrow {{n_\alpha }} = \left( { - 1;3;2} \right) = - \frac{1}{2}\left( {2; - 6; - 4} \right) = - \frac{1}{2}\overrightarrow {{n_R}} \) và \( - 1 \ne - \frac{1}{2}.5\) nên \(\left( \alpha \right)//\left( R \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
\(V = \pi \int\limits_0^1 {{e^{2x}}dx} \).
Câu 2
Lời giải
Đáp án đúng là: D
Ta có \(S = \int\limits_0^1 {\left| {{x^3}} \right|dx} + \int\limits_1^2 {\left| {2 - x} \right|dx} \)\( = \int\limits_0^1 {{x^3}dx} + \int\limits_1^2 {\left( {2 - x} \right)dx} = \frac{1}{2} + \int\limits_0^1 {{x^3}dx} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

