Gọi \(\left( H \right)\) là phần hình phẳng được giới hạn bởi đồ thị \(y = f\left( x \right)\) và trục hoành như hình vẽ. Diện tích của hai hình phẳng được gạch chéo nằm phía dưới và trên trục \(Ox\) lần lượt là 20 và 4. Tính \(\int\limits_{ - 3}^2 {f\left( x \right)dx} \).

Quảng cáo
Trả lời:
Đáp án đúng là: D
\(\int\limits_{ - 3}^2 {f\left( x \right)dx} \)\( = \int\limits_{ - 3}^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \)\( = - \int\limits_{ - 3}^1 {\left| {f\left( x \right)} \right|dx} + \int\limits_1^2 {\left| {f\left( x \right)} \right|dx} \)\( = - 20 + 4 = - 16\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\int\limits_0^1 {f\left( {2x} \right)dx} = 6\)\( \Leftrightarrow \frac{1}{2}\int\limits_0^1 {f\left( {2x} \right)d\left( {2x} \right)} = 6\)\( \Leftrightarrow \int\limits_0^2 {f\left( t \right)dt} = 12\)
\( \Rightarrow F\left( 2 \right) - F\left( 0 \right) = 12 \Rightarrow F\left( 0 \right) - F\left( 2 \right) = - 12\).
Câu 2
Lời giải
Đáp án đúng là: D
Phương trình mặt phẳng đi qua \(A\left( { - 1;1; - 2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {1; - 2; - 2} \right)\) là
\(\left( {x + 1} \right) - 2\left( {y - 1} \right) - 2\left( {z + 2} \right) = 0\)\( \Leftrightarrow x - 2y - 2z - 1 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.