Câu hỏi:

09/12/2025 7 Lưu

Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian \(Oxyz\) như hình vẽ nhờ một phần mềm đồ họa máy tính. Tính khoảng cách từ điểm \(B\) đến mái nhà \(\left( {DEMN} \right)\)(kết quả làm tròn đến hàng phần trăm).

Trả lời: 12 (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 5,66

Ta có \(\overrightarrow {ED} = \left( { - 6;0;0} \right),\overrightarrow {EM} = \left( {0;2;2} \right)\), \(\left[ {\overrightarrow {ED} ,\overrightarrow {EM} } \right] = \left( {0;12; - 12} \right) = 12\left( {0;1; - 1} \right)\).

Mặt phẳng \(\left( {DEMN} \right)\) đi qua \(D\left( {0;0;4} \right)\) và có một vectơ pháp tuyến \(\overrightarrow n = \left( {0;1; - 1} \right)\) có phương trình là: \(y - \left( {z - 4} \right) = 0 \Leftrightarrow y - z + 4 = 0\).

Ta có \(B\left( {6;4;0} \right)\), suy ra \(d\left( {B,\left( {DEMN} \right)} \right) = \frac{{\left| {4 - 0 + 4} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{8}{{\sqrt 2 }} = 4\sqrt 2 \approx 5,66\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\int\limits_0^1 {f\left( {2x} \right)dx} = 6\)\( \Leftrightarrow \frac{1}{2}\int\limits_0^1 {f\left( {2x} \right)d\left( {2x} \right)} = 6\)\( \Leftrightarrow \int\limits_0^2 {f\left( t \right)dt} = 12\)

\( \Rightarrow F\left( 2 \right) - F\left( 0 \right) = 12 \Rightarrow F\left( 0 \right) - F\left( 2 \right) = - 12\).

Câu 3

A. \(S = \int\limits_0^1 {\left( {{x^2} + 1} \right)dx} \). 
B. \(S = \int\limits_1^2 {\left( { - {x^2} - 1} \right)dx} \). 
C. \(S = \int\limits_1^2 {\left( {{x^2} + 1} \right)dx} \). 
D. \(S = \int\limits_0^2 {\left( {{x^2} + 1} \right)dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - x + y - 2z - 1 = 0\).                        
B. \( - x + y - 2z + 1 = 0\).     
C. \(x - 2y - 2z + 7 = 0\).               
D. \(x - 2y - 2z - 1 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(F'\left( x \right) = - f\left( x \right),\forall x \in K\).    
B. \(f'\left( x \right) = F\left( x \right),\forall x \in K\).    
C. \(f'\left( x \right) = - F\left( x \right),\forall x \in K\).    
D. \(F'\left( x \right) = f\left( x \right),\forall x \in K\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(1\).                                                    
B. \(3\).      
C. \(2\).          
D. \(5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP