Câu hỏi:

10/12/2025 50 Lưu

Có bao nhiêu giá trị nguyên thuộc khoảng \(\left( { - 30;\,30} \right)\) của tham số \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(0\).                 

Lời giải

 \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1 \Rightarrow y' = 3{x^2} - 2mx + 2m - 3\).

w Mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương \( \Leftrightarrow y' = 3{x^2} - 2mx + 2m - 3 > 0\,,\,\forall x \in \mathbb{R} \Leftrightarrow \Delta ' = {m^2} - 3\left( {2m - 3} \right) < 0 \Leftrightarrow {m^2} - 6m + 9 < 0\,(VN)\).

 Vậy không có giá trị của tham số \(m\) thỏa mãn yêu cầu bài toán

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Gọi \(S\) là tập hợp các số có bốn chữ số khác nhau được lập từ các chữ số \(0;1;2;3\); 4; 5; 6; 7. Chọn ngẫu nhiên một số thuộc tập hợp \(S\), tính xác suất để số chọn được chia hết cho 15.

Lời giải

Trả lời: \(\frac{{83}}{{735}}\)

Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).

Số có 4 chữ số có dạng \(\overline {abcd} \).

Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".

Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).

Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).

Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).

Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).

Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).

Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).

Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).

Lời giải

Trả lời: \(\frac{{{a^3}\sqrt 3 }}{6}\)

Lời giải

Gọi \(H\) là trung điểm \(AB\), suy ra \(SH \bot AB\) (do tam giác \(SAB\) đều).

Mặt khác \((SAB) \bot (ABCD)\) nên \(SH \bot (ABCD)\).

Đường cao hình chóp là \(SH = \frac{{a\sqrt 3 }}{2};\) diện tích đáy hình chóp \({S_{ABCD}} = {a^2}\).

Thể tích khối chóp là:

\({V_{S.ABCD}} = \frac{1}{3}SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot {a^2} = \frac{{{a^3}\sqrt 3 }}{6}\)(đơn vị thể tích).

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tìm thể tích khối chóp S.ABCD. (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).

Đúng
Sai

b) \[BC \bot \left( {SAB} \right)\].

Đúng
Sai

c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).

Đúng
Sai
d) \[SB \bot BC\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Đồ thị hai hàm số đối xứng nhau qua đường thẳng \(y =  - x\).

Đúng
Sai

b) Tập xác định của hai hàm số trên là \(\mathbb{R}\).

Đúng
Sai

c) Đồ thị của hai hàm số cắt nhau tại đúng một điểm.

Đúng
Sai
d) Hai hàm số trên đều nghịch biến trên tập xác định của nó.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP