Có bao nhiêu giá trị nguyên thuộc khoảng \(\left( { - 30;\,30} \right)\) của tham số \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương?
Có bao nhiêu giá trị nguyên thuộc khoảng \(\left( { - 30;\,30} \right)\) của tham số \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương?
Quảng cáo
Trả lời:
Trả lời: \(0\).
Lời giải
\(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1 \Rightarrow y' = 3{x^2} - 2mx + 2m - 3\).
w Mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương \( \Leftrightarrow y' = 3{x^2} - 2mx + 2m - 3 > 0\,,\,\forall x \in \mathbb{R} \Leftrightarrow \Delta ' = {m^2} - 3\left( {2m - 3} \right) < 0 \Leftrightarrow {m^2} - 6m + 9 < 0\,(VN)\).
Vậy không có giá trị của tham số \(m\) thỏa mãn yêu cầu bài toánHot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).
Số có 4 chữ số có dạng \(\overline {abcd} \).
Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".
Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).
Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).
Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).
Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).
Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).
Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).
Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).
Lời giải
Trả lời: \(\frac{{{a^3}\sqrt 3 }}{6}\)
Lời giải
Gọi \(H\) là trung điểm \(AB\), suy ra \(SH \bot AB\) (do tam giác \(SAB\) đều).
Mặt khác \((SAB) \bot (ABCD)\) nên \(SH \bot (ABCD)\).
Đường cao hình chóp là \(SH = \frac{{a\sqrt 3 }}{2};\) diện tích đáy hình chóp \({S_{ABCD}} = {a^2}\).
Thể tích khối chóp là:
\({V_{S.ABCD}} = \frac{1}{3}SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot {a^2} = \frac{{{a^3}\sqrt 3 }}{6}\)(đơn vị thể tích).

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).
b) \[BC \bot \left( {SAB} \right)\].
c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Đồ thị hai hàm số đối xứng nhau qua đường thẳng \(y = - x\).
b) Tập xác định của hai hàm số trên là \(\mathbb{R}\).
c) Đồ thị của hai hàm số cắt nhau tại đúng một điểm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
