Bộ 10 đề thi cuối kì 2 Toán 11 Kết nối tri thức cấu trúc mới có đáp án - Đề 02
4.6 0 lượt thi 16 câu hỏi 45 phút
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Giới hạn cơ bản, nâng cao có lời giải (P1)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 19 đề thi Giữa kì 1 Toán 11 Kết nối tri thức có đáp án - Đề 1
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
160 Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P4)
20 câu Trắc nghiệm Toán 11 Cánh diều Bài 5. Hình lăng trụ và hình hộp (Đúng-sai, trả lời ngắn) có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.\({a^{\frac{5}{6}}}\).
Lời giải
Với \[a > 0\], ta có \[{a^{\frac{2}{3}}}\sqrt a = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{2}{3} + \frac{1}{2}}} = {a^{\frac{7}{6}}}\].
Câu 2
A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).
Lời giải
Đồ thị hàm số ở hình vẽ là đồ thị của hàm số mũ có dạng \(y = {a^x}\). Loại đáp án A
Dựa vào đồ thị ta thấy hàm số nghịch biến trên \(\mathbb{R}\) nên \(0 < a < 1\). Loại đáp án B, D
Vậy đồ thị trong hình vẽ là đồ thị hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\).
Câu 3
Lời giải

Gọi \(M\) là trung điểm \(BC\). Do tam giác \(1\) cân tại \(A\) và tam giác \(DBC\) cân tại \(D\) nên, có: \(\left\{ \begin{array}{l}BC \bot DM\\BC \bot AM\end{array} \right. \Rightarrow BC \bot AD\).
Câu 4
A. \[2\].
Lời giải
Dựng hình bình hành \(ABFC\).
Ta có \(EM\;{\rm{//}}\;SF\)nên góc giữa \(EM\) và \(\left( {SBD} \right)\) bằng góc giữa \(SF\) và \(\left( {SBD} \right)\).
\(FB\;{\rm{//}}\;AC\)\( \Rightarrow FB \bot \left( {SBD} \right)\) do đó góc giữa \(SF\) và \(\left( {SBD} \right)\) bằng góc \(\widehat {FSB}\).
Ta có \(\tan \widehat {FSB} = \frac{{BF}}{{SB}} = \frac{{AC}}{{SB}} = \sqrt 2 \). Vậy chọn D.
Câu 5
A. \(BC \bot AH\).
Lời giải
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\end{array} \right.\) nên \[SA \bot \left( {ABCD} \right)\]
Suy ra \[SA \bot AC\] (B đúng); \(SA \bot BC\); \(SA \bot BD\).
Mặt khác \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\) suy ra \[BC \bot AH\] (A đúng).
và \(BD \bot AC\) nên \(BD \bot \left( {SAC} \right)\) suy ra \[BD \bot SC\];
Đồng thời \(HK\;{\rm{//}}\;BD\) nên \(HK \bot SC\) (C đúng).
Vậy mệnh đề sai là \(AK \bot BD\) (vì không đủ điều kiện chứng minh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{{{a^3}}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. \(P(X) = 0,42\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. \(\frac{2}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. \(y' = {17^{ - x}}\ln 17\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A. \[12{\rm{m/}}{{\rm{s}}^2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Phần 2. Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai
Theo kết quả khảo sát ở một trường học về số học sinh yêu thích một loại nước giải khát \(A\) được cho bởi bảng sau:
Lớp
Thích
Không thích
Số học sinh nam
Số học sinh nữ
Số học sinh nam
Số học sinh nữ
11A
23
12
5
10
11B
25
15
6
12
11C
20
15
8
15
Phần 2. Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai
Theo kết quả khảo sát ở một trường học về số học sinh yêu thích một loại nước giải khát \(A\) được cho bởi bảng sau:
|
Lớp |
Thích |
Không thích |
||
|
Số học sinh nam |
Số học sinh nữ |
Số học sinh nam |
Số học sinh nữ |
|
|
11A |
23 |
12 |
5 |
10 |
|
11B |
25 |
15 |
6 |
12 |
|
11C |
20 |
15 |
8 |
15 |
a) Xác suất để chọn được một học sinh nam và một học sinh nữ ở khối lớp 11 mà thích uống nước giải khát \(A\) là \(\frac{{952}}{{4565}}\).
b) Xác suất để chọn được một học sinh nam ở lớp \(11\;A\) và một học sinh nam ở lớp \(11\;B\) không thích nước giải khát \(A\) là \(\frac{1}{{2739}}\).
c) Gọi \(A\) là biến cố: "Học sinh nam thích nước giải khát \(A\) ". Tính được \(P(A) = \frac{{42}}{{79}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).
b) \[BC \bot \left( {SAB} \right)\].
c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
a) Đồ thị hai hàm số đối xứng nhau qua đường thẳng \(y = - x\).
b) Tập xác định của hai hàm số trên là \(\mathbb{R}\).
c) Đồ thị của hai hàm số cắt nhau tại đúng một điểm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
a) \(f\left( x \right)\)liên tục tại \(x = - 1.\)
b) \(f\left( x \right)\)có đạo hàm tại \(x = - 1.\)
c) \(f\left( { - 1} \right) = 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

