Câu hỏi:

10/12/2025 39 Lưu

Một chiếc túi chứa 5 quả bóng màu đỏ và 6 quả bóng màu xanh có cùng kích thước và khối lượng. Lần lượt lấy ngẫu nhiên một quả bóng rồi trả lại vào túi. Tính xác suất lấy được hai quả bóng màu xanh sau 2 lượt lấy

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(\frac{{36}}{{121}}\)

Ta có sơ đồ cây như sau:

Một chiếc túi chứa 5 quả bóng màu đỏ và 6 quả bóng màu xanh có cùng kích thước và khối lượng. Lần lượt lấy ngẫu nhiên một quả bóng rồi trả lại vào túi. Tính xác suất lấy được hai quả bóng màu xanh sau 2 lượt lấy (ảnh 1)

Trong đó: Đ là biến cố "Lấy được quả bóng màu đỏ”, X là biến cố "Lấy được quả bóng màu xanh".

Dựa vào sơ đồ cây, xác suất lấy 2 bóng xanh sau 2 lượt là \({\left( {\frac{6}{{11}}} \right)^2} = \frac{{36}}{{121}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Gọi \(S\) là tập hợp các số có bốn chữ số khác nhau được lập từ các chữ số \(0;1;2;3\); 4; 5; 6; 7. Chọn ngẫu nhiên một số thuộc tập hợp \(S\), tính xác suất để số chọn được chia hết cho 15.

Lời giải

Trả lời: \(\frac{{83}}{{735}}\)

Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).

Số có 4 chữ số có dạng \(\overline {abcd} \).

Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".

Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).

Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).

Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).

Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).

Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).

Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).

Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).

Lời giải

Trả lời: \((SC,(SAB)) \approx {12,1^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SB vuông góc ABC và SB = 4a. Tính góc giữa đường thẳng SC và mặt phẳng SAB? (ảnh 1)

Kẻ \(CI \bot AB \Rightarrow I\) là trung điểm \(AB\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CI \bot AB}\\{CI \bot SB}\end{array} \Rightarrow CI \bot (SAB)} \right.\) tại \(I\) và \(SC\) cắt mp\((SAB)\) tại \(S\)

\( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp \((SAB)\)

\( \Rightarrow (SC,(SAB)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(IC = \frac{{a\sqrt 3 }}{2}\)

Ta có: \(SC = \sqrt {S{B^2} + B{C^2}}  = \sqrt {{{(4a)}^2} + {a^2}}  = \sqrt {17} a\)

Xét \(\Delta SCI\) vuông tại \(I\) : \(\sin \widehat {CSI} = \frac{{CI}}{{SC}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {17} a}} = \frac{{\sqrt {51} }}{{34}} \Rightarrow \widehat {CSI} \approx {12,1^0}\)

Vậy \((SC,(SAB)) \approx {12,1^0}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).

Đúng
Sai

b) \[BC \bot \left( {SAB} \right)\].

Đúng
Sai

c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).

Đúng
Sai
d) \[SB \bot BC\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).  

B. \(y = {\left( {\sqrt 2 } \right)^x}\).  
C. \(y = {\left( {\frac{1}{3}} \right)^x}\). 
D. \(y = {3^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP